Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Mastering SciPy
  • Toc
  • feedback
Mastering SciPy

Mastering SciPy

By : Blanco-Silva, Francisco Javier B Silva
3.5 (2)
close
Mastering SciPy

Mastering SciPy

3.5 (2)
By: Blanco-Silva, Francisco Javier B Silva

Overview of this book

The SciPy stack is a collection of open source libraries of the powerful scripting language Python, together with its interactive shells. This environment offers a cutting-edge platform for numerical computation, programming, visualization and publishing, and is used by some of the world’s leading mathematicians, scientists, and engineers. It works on any operating system that supports Python and is very easy to install, and completely free of charge! It can effectively transform into a data-processing and system-prototyping environment, directly rivalling MATLAB and Octave. This book goes beyond a mere description of the different built-in functions coded in the libraries from the SciPy stack. It presents you with a solid mathematical and computational background to help you identify the right tools for each problem in scientific computing and visualization. You will gain an insight into the best practices with numerical methods depending on the amount or type of data, properties of the mathematical tools employed, or computer architecture, among other factors. The book kicks off with a concise exploration of the basics of numerical linear algebra and graph theory for the treatment of problems that handle large data sets or matrices. In the subsequent chapters, you will delve into the depths of algorithms in symbolic algebra and numerical analysis to address modeling/simulation of various real-world problems with functions (through interpolation, approximation, or creation of systems of differential equations), and extract their representing features (zeros, extrema, integration or differentiation). Lastly, you will move on to advanced concepts of data analysis, image/signal processing, and computational geometry.
Table of Contents (11 chapters)
close
10
Index

Data exploration


Data exploration is generally performed by presenting a meaningful synthesis of its distribution—it could be through a sequence of graphs, by describing it with a set of numerical parameters, or by approximating it with simple functions. Now let's explore different possibilities, and how to accomplish them with different tools in the SciPy stack.

Picturing distributions with graphs

The type of graph depends on the type of variable (categorical, quantitative, or dates).

Bar plots and pie charts

When our data is described in terms of categorical variables, we often use pie charts or bar graphs to represent it. For example, we access the Consumer Complaint Database from the Consumer Financial Protection Bureau, at http://catalog.data.gov/dataset/consumer-complaint-database. The database was created in February 2014 to contain complaints received by the Bureau about financial products and services. In its updated version in March of the same year, it consisted of almost 300,000...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete