Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning for OpenCV
  • Toc
  • feedback
Machine Learning for OpenCV

Machine Learning for OpenCV

By : Michael Beyeler, Michael Beyeler (USD)
4.4 (13)
close
Machine Learning for OpenCV

Machine Learning for OpenCV

4.4 (13)
By: Michael Beyeler, Michael Beyeler (USD)

Overview of this book

Machine learning is no longer just a buzzword, it is all around us: from protecting your email, to automatically tagging friends in pictures, to predicting what movies you like. Computer vision is one of today's most exciting application fields of machine learning, with Deep Learning driving innovative systems such as self-driving cars and Google’s DeepMind. OpenCV lies at the intersection of these topics, providing a comprehensive open-source library for classic as well as state-of-the-art computer vision and machine learning algorithms. In combination with Python Anaconda, you will have access to all the open-source computing libraries you could possibly ask for. Machine learning for OpenCV begins by introducing you to the essential concepts of statistical learning, such as classification and regression. Once all the basics are covered, you will start exploring various algorithms such as decision trees, support vector machines, and Bayesian networks, and learn how to combine them with other OpenCV functionality. As the book progresses, so will your machine learning skills, until you are ready to take on today's hottest topic in the field: Deep Learning. By the end of this book, you will be ready to take on your own machine learning problems, either by building on the existing source code or developing your own algorithm from scratch!
Table of Contents (13 chapters)
close

Working with Data in OpenCV and Python

Now that we have whetted our appetite for machine learning, it is time to delve a little deeper into the different parts that make up a typical machine learning system.

Far too often, you hear someone throw around the phrase, just apply machine learning to your data!, as if that will instantly solve all your problems. You can imagine that the reality of this is much more intricate. Although, I will admit that nowadays it is incredibly easy to build your own machine learning system simply by cutting and pasting just a few lines of code from the internet. However, in order to build a system that is truly powerful and effective, it is essential to have a firm grasp of the underlying concepts and an intimate knowledge of the strengths and weaknesses of each method. So don't worry if you aren't considering yourself a machine learning...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete