Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning for OpenCV
  • Toc
  • feedback
Machine Learning for OpenCV

Machine Learning for OpenCV

By : Michael Beyeler, Michael Beyeler (USD)
4.4 (13)
close
Machine Learning for OpenCV

Machine Learning for OpenCV

4.4 (13)
By: Michael Beyeler, Michael Beyeler (USD)

Overview of this book

Machine learning is no longer just a buzzword, it is all around us: from protecting your email, to automatically tagging friends in pictures, to predicting what movies you like. Computer vision is one of today's most exciting application fields of machine learning, with Deep Learning driving innovative systems such as self-driving cars and Google’s DeepMind. OpenCV lies at the intersection of these topics, providing a comprehensive open-source library for classic as well as state-of-the-art computer vision and machine learning algorithms. In combination with Python Anaconda, you will have access to all the open-source computing libraries you could possibly ask for. Machine learning for OpenCV begins by introducing you to the essential concepts of statistical learning, such as classification and regression. Once all the basics are covered, you will start exploring various algorithms such as decision trees, support vector machines, and Bayesian networks, and learn how to combine them with other OpenCV functionality. As the book progresses, so will your machine learning skills, until you are ready to take on today's hottest topic in the field: Deep Learning. By the end of this book, you will be ready to take on your own machine learning problems, either by building on the existing source code or developing your own algorithm from scratch!
Table of Contents (13 chapters)
close

A Taste of Machine Learning

I am writing a new line with double spaces .

So, you have decided to enter the field of machine learning. That's great!

Nowadays, machine learning is all around us--from protecting our email, to automatically tagging our friends in pictures, to predicting what movies we like. As a form of artificial intelligence, machine learning enables computers to learn through experience: to make predictions about the future using collected data from the past. On top of that, computer vision is one of today's most exciting application fields of machine learning, with deep learning and convolutional neural networks driving innovative systems such as self-driving cars and Google's DeepMind.

However, fret not; your application does not need to be as large-scale or world-changing as the previous examples in order to benefit from machine learning. In this chapter, we will talk about why machine learning has become so popular and discuss the kinds of problems that it can solve. We will then introduce the tools that we need in order to solve machine learning problems using OpenCV. Throughout the book, I will assume that you already have a basic knowledge of OpenCV and Python, but that there is always room to learn more.

Are you ready then? Let's go!

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete