Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python Machine Learning
  • Toc
  • feedback
Python Machine Learning

Python Machine Learning

By : Sebastian Raschka
4.3 (100)
close
Python Machine Learning

Python Machine Learning

4.3 (100)
By: Sebastian Raschka

Overview of this book

Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world’s leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you’ll soon be able to answer some of the most important questions facing you and your organization.
Table of Contents (15 chapters)
close
14
Index

Dealing with missing data

It is not uncommon in real-world applications that our samples are missing one or more values for various reasons. There could have been an error in the data collection process, certain measurements are not applicable, particular fields could have been simply left blank in a survey, for example. We typically see missing values as the blank spaces in our data table or as placeholder strings such as NaN (Not A Number).

Unfortunately, most computational tools are unable to handle such missing values or would produce unpredictable results if we simply ignored them. Therefore, it is crucial that we take care of those missing values before we proceed with further analyses. But before we discuss several techniques for dealing with missing values, let's create a simple example data frame from a CSV (comma-separated values) file to get a better grasp of the problem:

>>> import pandas as pd
>>> from io import StringIO
>>> csv_data = '...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete