Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python Machine Learning
  • Toc
  • feedback
Python Machine Learning

Python Machine Learning

By : Sebastian Raschka
4.3 (100)
close
Python Machine Learning

Python Machine Learning

4.3 (100)
By: Sebastian Raschka

Overview of this book

Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world’s leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you’ll soon be able to answer some of the most important questions facing you and your organization.
Table of Contents (15 chapters)
close
14
Index

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "And already installed packages can be updated via the --upgrade flag."

A block of code is set as follows:

>>> import matplotlib.pyplot as plt
>>> import numpy as np

>>> y = df.iloc[0:100, 4].values
>>> y = np.where(y == 'Iris-setosa', -1, 1)
>>> X = df.iloc[0:100, [0, 2]].values
>>> plt.scatter(X[:50, 0], X[:50, 1],
...             color='red', marker='x', label='setosa')
>>> plt.scatter(X[50:100, 0], X[50:100, 1],
...             color='blue', marker='o', label='versicolor')
>>> plt.xlabel('petal length')
>>> plt.ylabel('sepal length')
>>> plt.legend(loc='upper left')
>>> plt.show()

Any command-line input or output is written as follows:

> dot -Tpng tree.dot -o tree.png

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "After we click on the Dashboard button in the top-right corner, we have access to the control panel shown at the top of the page."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete