Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python for Finance
  • Toc
  • feedback
Python for Finance

Python for Finance

By : Yuxing Yan
3.9 (22)
close
Python for Finance

Python for Finance

3.9 (22)
By: Yuxing Yan

Overview of this book

A hands-on guide with easy-to-follow examples to help you learn about option theory, quantitative finance, financial modeling, and time series using Python. Python for Finance is perfect for graduate students, practitioners, and application developers who wish to learn how to utilize Python to handle their financial needs. Basic knowledge of Python will be helpful but knowledge of programming is necessary.
Table of Contents (14 chapters)
close
13
Index

Understanding optimization


In finance, many issues depend on optimization, such as choosing an optimal portfolio with an objective function and with a set of constraints. For those cases, we could use a SciPy optimization module called scipy.optimize. Assume that we want to estimate the x value that minimizes the value of y, where y =3 + x2. Obviously, the minimum value of y is achieved when x takes a value of 0.

>>>import scipy.optimize as optimize 
>>>def my_f(x):
       Return 3 + x**2
>>>optimize.fmin(my_f,5)   # 5 is initial value
     Optimization terminated successfully
     Current function values: 3:000000
     Iterations: 20
     Function evaluations: 40
Array([ 0. ])

To find a list of all input variables to this fmin() function and their meanings, issue help(optimize.fmin). To list all the functions included in scipy.optimize, issue dir(optimize).

bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete