Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python for Finance
  • Toc
  • feedback
Python for Finance

Python for Finance

By : Yuxing Yan
3.9 (22)
close
Python for Finance

Python for Finance

3.9 (22)
By: Yuxing Yan

Overview of this book

A hands-on guide with easy-to-follow examples to help you learn about option theory, quantitative finance, financial modeling, and time series using Python. Python for Finance is perfect for graduate students, practitioners, and application developers who wish to learn how to utilize Python to handle their financial needs. Basic knowledge of Python will be helpful but knowledge of programming is necessary.
Table of Contents (14 chapters)
close
13
Index

Generating random numbers from a standard normal distribution

Normal distributions play a central role in finance. A major reason is that many finance theories, such as option theory and applications, are based on the assumption that stock returns follow a normal distribution. It is quite often that we need to generate n random numbers from a standard normal distribution. For this purpose, we have the following two lines of code:

>>>import scipy as sp
>>>x=sp.random.standard_normal(size=10)

The basic random numbers in SciPy/NumPy are created by Mersenne Twister PRNG in the numpy.random function. The random numbers for distributions in numpy.random are in cython/pyrex and are pretty fast. To print the first few observations, we use the print() function as follows:

>>>print x[0:5]
[-0.55062594 -0.51338547 -0.04208367 -0.66432268  0.49461661]
>>>

Alternatively, we could use the following code:

>>>import scipy as sp
>>>x=sp.random.normal(size...
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete