-
Book Overview & Buying
-
Table Of Contents
-
Feedback & Rating

Effective .NET Memory Management
By :

Modern computers are designed to store and retrieve data during application runtimes. Every modern device or computer is designed to allow one or more applications to run while reading and writing supporting data. Data can be stored either long-term or short-term. For long-term storage, we use storage media such as hard disks. This is what we call non-volatile storage. If the device loses power, the data remains and can be reused later, but this type of storage is not optimized for high-speed situations.
Outside of data needed for extended periods, applications must also store data between processes. Data is constantly being written, read, and removed as an application performs various operations. This data type is best stored in volatile storage or memory caches and arrays. In this situation, the data is lost when the device loses power, but data is read and written at a very high speed while in use.
One practical example where it’s better to use volatile memory instead of non-volatile memory for performance reasons is cache memory in computer systems. Cache memory is a small, fast type of volatile memory that stores frequently accessed data and instructions to speed up processing. It’s typically faster than accessing data from non-volatile memory, such as hard disk drives (HDDs) or solid-state drives (SSDs). When a processor needs to access data, it first checks the cache memory. If the data is in the cache (cache hit), the processor can retrieve it quickly, resulting in faster overall performance. However, if the data is not in the cache (cache miss), the processor needs to access it from slower, non-volatile memory, causing a delay in processing.
In this scenario, using volatile memory (cache memory) instead of non-volatile memory (HDDs or SSDs) improves performance because volatile memory offers much faster access times. This is especially critical in systems where latency is a concern, such as high-performance computing, gaming, and real-time processing applications. Overall, leveraging volatile memory helps reduce the time it takes to access frequently used data, enhancing system performance and responsiveness.
Memory is a general name given to an array of rapidly available information shared by the CPU and connected devices. Programs and information use up this memory while the processor carries out operations. The processor moves instructions and information in and out of the processor very quickly. This is why caches (at the CPU level) and Random Access Memory (RAM) are the storage locations immediately used during processes. CPUs have three cache levels: L1, L2, and L3. L1 is the fastest, but it has low storage capacity, and with each higher level, there is more space at the expense of speed. They are closest to the CPU for temporary storage and high-speed access. Figure 1.1 depicts the layout of the different cache levels.
Figure 1.1 – The different cache levels in a CPU and per CPU core
Each processor core contains space for L1 and L2 caches, which allow each core to complete small tasks as quickly as possible. For less frequent tasks that might be shared across cores, the L3 cache is used and is shared between the cores of the CPU.
Memory management, in principle, is a broad-brush expression that refers to techniques used to optimize a CPU’s efficient usage of memory during its processes. Consider that every device has specifications that outline the CPU speed and, more relevantly, storage and memory size. The amount of memory available will directly impact the types of applications that can be supported by the device and how efficiently the applications will perform on such a device. Memory management techniques exist to assist us, as developers, in ensuring that our application makes the best use of available resources and that the device will run as smoothly as possible while using the set amount of memory to handle multiple operations and processes.
Memory management considers several factors, such as the following:
Devices with CPUs generally have an OS that coordinates resource distribution during processes. This resource distribution is relative to the available hardware, and the performance of the applications is relative to how efficiently memory is managed for them.
A typical has three major areas where memory management is paramount to the performance of said device. These three areas are hardware, application, and the OS. Let’s review some of the nuances that govern memory management at these levels.
There are three levels where memory management is implemented, and they are as follows:
Figure 1.2 – The CPU and MMU and how they connect to memory spaces in RAM
Application memory managers have several hurdles to contend with. It must be considered that memory management requires the CPU, which will cause competition for the system resources between this and other processes. Also, each time memory allocation or reclamation happens, there is a pause in the application as focus is given to that operation. The faster this can happen, the less obvious it is to the end user, so it must be handled as efficiently as possible. Finally, the more memory is allocated and used, the more fragmented the memory becomes. Memory spreads across non-contiguous blocks, leading to higher allocation times and slower read speeds during runtime.
Figure 1.3 – A high-level representation of a computer’s memory hierarchy
Each component in a computer’s hardware and OS has a critical role to play in how memory is managed for applications. If we are to ensure that our devices perform at their peak, we need to understand how resource allocation occurs and some of the potential dangers that poor resource management and allocation can lead to. We will review these topics next.
Change the font size
Change margin width
Change background colour