Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Clean Code in Python
  • Table Of Contents Toc
  • Feedback & Rating feedback
Clean Code in Python

Clean Code in Python

By : Anaya
4.6 (34)
close
close
Clean Code in Python

Clean Code in Python

4.6 (34)
By: Anaya

Overview of this book

Experienced professionals in every field face several instances of disorganization, poor readability, and testability due to unstructured code. With updated code and revised content aligned to the new features of Python 3.9, this second edition of Clean Code in Python will provide you with all the tools you need to overcome these obstacles and manage your projects successfully. The book begins by describing the basic elements of writing clean code and how it plays a key role in Python programming. You will learn about writing efficient and readable code using the Python standard library and best practices for software design. The book discusses object-oriented programming in Python and shows you how to use objects with descriptors and generators. It will also show you the design principles of software testing and how to resolve problems by implementing software design patterns in your code. In the concluding chapter, we break down a monolithic application into a microservices-based one starting from the code as the basis for a solid platform. By the end of this clean code book, you will be proficient in applying industry-approved coding practices to design clean, sustainable, and readable real-world Python code.
Table of Contents (13 chapters)
close
close
11
Other Books You May Enjoy
12
Index

Tools for testing

There are a lot of tools we can use for writing our unit tests, all of them with pros and cons and serving different purposes. I'll present the two most common libraries used for unit testing in Python. They cover most (if not all) use cases, and they're very popular, so knowing how to use them comes in handy.

Along with testing frameworks and test running libraries, it's often common to find projects that configure code coverage, which they use as quality metrics. Since coverage (when used as a metric) is misleading, after seeing how to create unit tests, we'll discuss why it's not to be taken lightly.

The next section starts by introducing the main libraries we're going to use in this chapter for unit testing.

Frameworks and libraries for unit testing

In this section, we will discuss two frameworks for writing and running unit tests. The first one, unittest, is available in the standard library of Python, while the...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY