Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Learn Python by Building Data Science Applications
  • Table Of Contents Toc
  • Feedback & Rating feedback
Learn Python by Building Data Science Applications

Learn Python by Building Data Science Applications

By : Kats, Katz
2.8 (4)
close
close
Learn Python by Building Data Science Applications

Learn Python by Building Data Science Applications

2.8 (4)
By: Kats, Katz

Overview of this book

Python is the most widely used programming language for building data science applications. Complete with step-by-step instructions, this book contains easy-to-follow tutorials to help you learn Python and develop real-world data science projects. The “secret sauce” of the book is its curated list of topics and solutions, put together using a range of real-world projects, covering initial data collection, data analysis, and production. This Python book starts by taking you through the basics of programming, right from variables and data types to classes and functions. You’ll learn how to write idiomatic code and test and debug it, and discover how you can create packages or use the range of built-in ones. You’ll also be introduced to the extensive ecosystem of Python data science packages, including NumPy, Pandas, scikit-learn, Altair, and Datashader. Furthermore, you’ll be able to perform data analysis, train models, and interpret and communicate the results. Finally, you’ll get to grips with structuring and scheduling scripts using Luigi and sharing your machine learning models with the world as a microservice. By the end of the book, you’ll have learned not only how to implement Python in data science projects, but also how to maintain and design them to meet high programming standards.
Table of Contents (26 chapters)
close
close
Free Chapter
1
Section 1: Getting Started with Python
11
Section 2: Hands-On with Data
17
Section 3: Moving to Production

Beginning with pandas

Of course, not all dataand data analysisis numeric. To address that gap, and inspired by the R language's dataframe objects, another packagepandaswas created by Wes McKinney in 2008. While it heavily relies on NumPy for numeric computations, its core interface objects are dataframes (2-dimensional multitype tables) and series (1-dimensional arrays). Dataframes, in comparison to NumPy matrices, don't require all data to be of the same type. On the contrary, they allow you to mix numeric values with Boolean, strings, DateTimes, and any other arbitrary Python objects. It does require (and enforce), however, the data type to be uniform verticallywithin the same columns. Compared to NumPy, it also allows dataframe columns and rows to have arbitrary numeric or string names—or even hierarchical, multilevel...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY