Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Functional Programming with TypeScript
  • Toc
  • feedback
Hands-On Functional Programming with TypeScript

Hands-On Functional Programming with TypeScript

By : Jansen
2 (2)
close
Hands-On Functional Programming with TypeScript

Hands-On Functional Programming with TypeScript

2 (2)
By: Jansen

Overview of this book

Functional programming is a powerful programming paradigm that can help you to write better code. However, learning functional programming can be complicated, and the existing literature is often too complex for beginners. This book is an approachable introduction to functional programming and reactive programming with TypeScript for readers without previous experience in functional programming with JavaScript, TypeScript , or any other programming language. The book will help you understand the pros, cons, and core principles of functional programming in TypeScript. It will explain higher order functions, referential transparency, functional composition, and monads with the help of effective code examples. Using TypeScript as a functional programming language, you’ll also be able to brush up on your knowledge of applying functional programming techniques, including currying, laziness, and immutability, to real-world scenarios. By the end of this book, you will be confident when it comes to using core functional and reactive programming techniques to help you build effective applications with TypeScript.
Table of Contents (14 chapters)
close
5
The Runtime – Closures and Prototypes

Laziness

Many functional programming languages feature lazy-evaluated APIs. The idea behind lazy evaluation is that operations are not computed until doing so can no longer be postponed. The following example declares a function that allows us to find an element in an array. When the function is invoked, we don't filter the array. Instead, we declare a proxy and a handler:

function lazyFind<T>(arr: T[], filter: (i: T) => boolean): T {

let hero: T | null = null;

const proxy = new Proxy(
{},
{
get: (obj, prop) => {
console.log("Filtering...");
if (!hero) {
hero = arr.find(filter) || null;
}
return hero ? (hero as any)[prop] : null;
}
}
);

return proxy as any;
}

It is only later, when one of the properties in the result is accessed, that the proxy handler is invoked and filtering takes place:

const heroes = [
{
name: "Spiderman",
powers: [
"wall-crawling",
"enhanced strength",
"enhanced speed",
"spider-Sense"
]
},
{
name: "Superman",
powers: [
"flight",
"superhuman strength",
"x-ray vision",
"super-speed"
]
}
];

console.log("A");
const spiderman = lazyFind(heroes, (h) => h.name === "Spiderman");
console.log("B");
console.log(spiderman.name);
console.log("C");

/*
A
B
Filtering...
Spiderman
C
*/

If we examine the console output, we will be able to see that the Filtering... message is not logged into the console until we access the property name of the result object. The preceding implementation is a very rudimentary implementation, but it can help us to understand how lazy evaluation works. Laziness can sometimes improve the overall performance of our applications.

We will learn more about function composition patterns later in Chapter 9, Functional-Reactive Programming.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete