Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Modern Python Cookbook
  • Toc
  • feedback
Modern Python Cookbook

Modern Python Cookbook

2.7 (3)
close
Modern Python Cookbook

Modern Python Cookbook

2.7 (3)

Overview of this book

Python is the preferred choice of developers, engineers, data scientists, and hobbyists everywhere. It is a great scripting language that can power your applications and provide great speed, safety, and scalability. By exposing Python as a series of simple recipes, you can gain insight into specific language features in a particular context. Having a tangible context helps make the language or standard library feature easier to understand. This book comes with over 100 recipes on the latest version of Python. The recipes will benefit everyone ranging from beginner to an expert. The book is broken down into 13 chapters that build from simple language concepts to more complex applications of the language. The recipes will touch upon all the necessary Python concepts related to data structures, OOP, functional programming, as well as statistical programming. You will get acquainted with the nuances of Python syntax and how to effectively use the advantages that it offers. You will end the book equipped with the knowledge of testing, web services, and configuration and application integration tips and tricks. The recipes take a problem-solution approach to resolve issues commonly faced by Python programmers across the globe. You will be armed with the knowledge of creating applications with flexible logging, powerful configuration, and command-line options, automated unit tests, and good documentation.
Table of Contents (12 chapters)
close

Using super flexible keyword parameters

Some design problems involve solving a simple equation for one unknown given enough known values. For example, rate, time, and distance have a simple linear relationship. We can solve for any one given the other two. Here are the three rules that we can use as an example:

  • d = r × t
  • r = d / t
  • t = d / r

When designing electrical circuits, for example, a similar set of equations is used based on Ohm's Law. In that case, the equations tie together resistance, current, and voltage.

In some cases, we want to provide a simple, high-performance software implementation that can perform any of the three different calculations based on what's known and what's unknown. We don't want to use a general algebraic framework; we want to bundle the three solutions into a simple, efficient function.

...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete