Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Concurrency Programming with Java 9, Second Edition
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering Concurrency Programming with Java 9, Second Edition

Mastering Concurrency Programming with Java 9, Second Edition

By : Javier Fernández González
3.8 (4)
close
close
Mastering Concurrency Programming with Java 9, Second Edition

Mastering Concurrency Programming with Java 9, Second Edition

3.8 (4)
By: Javier Fernández González

Overview of this book

Concurrency programming allows several large tasks to be divided into smaller sub-tasks, which are further processed as individual tasks that run in parallel. Java 9 includes a comprehensive API with lots of ready-to-use components for easily implementing powerful concurrency applications, but with high flexibility so you can adapt these components to your needs. The book starts with a full description of the design principles of concurrent applications and explains how to parallelize a sequential algorithm. You will then be introduced to Threads and Runnables, which are an integral part of Java 9's concurrency API. You will see how to use all the components of the Java concurrency API, from the basics to the most advanced techniques, and will implement them in powerful real-world concurrency applications. The book ends with a detailed description of the tools and techniques you can use to test a concurrent Java application, along with a brief insight into other concurrency mechanisms in JVM.
Table of Contents (14 chapters)
close
close

First example - a keyword extraction algorithm


In this section, you are going to use a phaser to implement a keyword extraction algorithm. The main purpose of these kinds of algorithms is to extract the words from a text document or a collection of documents, which define the document or the document inside the collection, better. These terms can be used to summarize the documents, cluster them, or to improve the information search process.

The most basic algorithm to extract the keywords of the documents in a collection (but it's still commonly used nowadays) is based on the TF-IDF measure where:

  • Term Frequency (TF) is the number of times that a d appears in a document.
  • Document Frequency (DF) is the number of documents that contain a word. The Inverse Document Frequency (IDF) measures the information that word provides to distinguish a document from others. If a word is very common, its IDF will be low, but if the word appears in only a few documents, its IDF will be high.

The TF-IDF of the...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY