Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python Geospatial Analysis Cookbook
  • Toc
  • feedback
Python Geospatial Analysis Cookbook

Python Geospatial Analysis Cookbook

By : Diener
4.4 (5)
close
Python Geospatial Analysis Cookbook

Python Geospatial Analysis Cookbook

4.4 (5)
By: Diener

Overview of this book

Geospatial development links your data to places on the Earth’s surface. Its analysis is used in almost every industry to answer location type questions. Combined with the power of the Python programming language, which is becoming the de facto spatial scripting choice for developers and analysts worldwide, this technology will help you to solve real-world spatial problems. This book begins by tackling the installation of the necessary software dependencies and libraries needed to perform spatial analysis with Python. From there, the next logical step is to prepare our data for analysis; we will do this by building up our tool box to deal with data preparation, transformations, and projections. Now that our data is ready for analysis, we will tackle the most common analysis methods for vector and raster data. To check or validate our results, we will explore how to use topology checks to ensure top-quality results. This is followed with network routing analysis focused on constructing indoor routes within buildings, over different levels. Finally, we put several recipes together in a GeoDjango web application that demonstrates a working indoor routing spatial analysis application. The round trip will provide you all the pieces you need to accomplish your own spatial analysis application to suit your requirements.
Table of Contents (15 chapters)
close
12
A. Other Geospatial Python Libraries
13
B. Mapping Icon Libraries
14
Index

Finding out whether a point is inside a polygon


A point inside a polygon analysis query is a very common spatial operation. This query can identify objects located within an area such as a polygon. The area of interest in this example is a 100 m buffer polygon around bike paths and we would like to locate all schools that are inside this polygon.

Getting ready

In the previous section, we used the schools table to create a buffer. This time around, we will use this table as our input points table. The bikeways table that we imported in Chapter 3, Moving Spatial Data from One Format to Another, will be used as our input lines to generate a new 100 m buffer polygon. Be sure, however, that you have the two datasets in your local PostgreSQL database.

How to do it...

  1. Now, let's dive into some more code to find schools located within 100 m of the bikeways in order to find points inside a polygon:

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    
    import json
    import psycopg2
    from geojson import loads, Feature...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete