-
Book Overview & Buying
-
Table Of Contents
-
Feedback & Rating

Deep Learning for Natural Language Processing
By :

Solution:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('train_comment_small_100.csv', sep=',')
import re
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
corpus = []
for i in range(0, dataset.shape[0]-1):
review = re.sub('[^a-zA-Z]', ' ', dataset['comment_text'][i])
review = review.lower()
review = review.split()
ps = PorterStemmer()
review = [ps.stem(word) for word in review if not word in set(stopwords.words('english'))]
review = ' '.join(review)
corpus.append(review)
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(max_features = 20)
X = cv.fit_transform(corpus).toarray()
y = dataset.iloc[:,0]
y1 = y[:99]
y1
from sklearn import preprocessing
labelencoder_y = preprocessing.LabelEncoder()
y = labelencoder_y.fit_transform(y1)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
import tensorflow
import keras
from keras.models import Sequential
from keras.layers import Dense
classifier = Sequential()
classifier.add(Dense(output_dim = 20, init = 'uniform', activation = 'relu', input_dim = 20))
classifier.add(Dense(output_dim =20, init = 'uniform', activation = 'relu'))
classifier.add(Dense(output_dim = 1, init = 'uniform', activation = 'softmax'))
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
classifier.fit(X_train, y_train, batch_size = 3, nb_epoch = 5)
X_test
y_pred = classifier.predict(X_test)
scores = classifier.evaluate(X_test, y_pred, verbose=1)
print("Accuracy:", scores[1])
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
scores
Your output should look similar to this:
Change the font size
Change margin width
Change background colour