Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Intel Edison Projects
  • Table Of Contents Toc
  • Feedback & Rating feedback
Intel Edison Projects

Intel Edison Projects

By : Basu
close
close
Intel Edison Projects

Intel Edison Projects

By: Basu

Overview of this book

Change the way you look at embedded electronics with Intel Edison. It is a small computing platform packed with a set of robust features to deliver hands-on performance, durability, and software support. This book is a perfect place to kickstart development and rapid prototyping using Intel Edison. It will start by introducing readers to the Intel Edison board and explaining how to get started with it. You will learn how to build a mini weather station, which will help you to acquire temperature and smoke level and push it to the IoT platform. Then you will see how to build a home automation device and control your appliances using an Android app. Furthermore, we will build a security system using a webcam to detect faces and perform voice recognition. Toward the end, the book will demonstrate how you can build two robots, which will be based on different line sensing sensors and can be controlled by a PC. The book will guide the readers through each and every step of execution of a project, using Intel Edison.
Table of Contents (7 chapters)
close
close

Intel XDK for IoT (Node.js)

Another IDE we will be covering is the powerful cross-platform development tool by Intel: Intel XDK. This will be used to run our Node.js scripts. Ideally we run our Node.js scripts from the XDK, but there is always an option to do the same by just transferring the .js file to your device using an FTP client such as FileZilla and use node FileName.js to run your script. From the list of downloaded software provided at the beginning of this chapter, download and install the XDK and open it. You may be required to sign in to the Intel developer zone. Once done, open your XDK. Then, under IoT embedded applications, select a Blank IoT Node.js Template:

Screenshot for XDK

Once opened, replace all the existing code with the following code:

var m = require('mraa'); //require mraa 
console.log('MRAA Version: ' + m.getVersion()); //write the mraa version to the console

varmyLed = new m.Gpio(13); //LED hooked up to digital pin 13 (or built in pin on Galileo Gen1 & Gen2 or Edison)
myLed.dir(m.DIR_OUT); //set the gpio direction to output
varledState = true; //Boolean to hold the state of Led

functionperiodicActivity()
{
myLed.write(ledState?1:0);
ledState = !ledState;
setTimeout(periodicActivity,1000);
}
periodicActivity(); //call the periodicActivity function

If you have a close look at the code, then you may notice that the structure of the code remains more or less similar as that of the other two platforms. We initially import the MRAA library:

var m = require('mraa');
console.log('MRAA Version: ' + m.getVersion());

We also display the version of MRAA installed (you can skip this step). The next task is to initialize and configure the pin to be in output or input mode:

varmyLed = new m.Gpio(13); 
myLed.dir(m.DIR_OUT);
varledState = true;

We use ledState to get the present state of the LED. Next, we define the logic in a separate function for blinking:

functionperiodicActivity() 
{
myLed.write(ledState?1:0);
ledState = !ledState;
setTimeout(periodicActivity,1000);
}
periodicActivity();

Finally, we call the function. On close inspection of the code, it's evident that the we have used only one delay in milliseconds as we are checking the present state using the tertiary operator. In order to execute the code on the device, we need to connect our device first.

To connect your device to the XDK, go to the IoT Device section, and click on the dropdown. You may see your device in the dropdown. If you see it, then click on Connect:

XDK screenshot connection pane

If the device is not listed, then we need to add a manual connection. Click on Add Manual Connection, then add the credentials:

Screenshot for manual connection

In the address, put in the IP which was used in FileZilla. In the Username, insert root, and the password is the password that was set before. Click on Connect and your device should be connected. Click on Upload to upload the program and Run to run the program:

Screenshot for uploading and executing the code

After uploading, the LED that is attached to pin 13 should blink. Normally, when dealing with complex projects, we go for blank templates so that it's easy to customize and do the stuff we need.

For more examples and details on the XDK are available at: https://software.intel.com/en-us/getting-started-with-xdk-and-iot
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY