Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Graph Analytics with Neo4j
  • Toc
  • feedback
Hands-On Graph Analytics with Neo4j

Hands-On Graph Analytics with Neo4j

By : Scifo
4.6 (9)
close
Hands-On Graph Analytics with Neo4j

Hands-On Graph Analytics with Neo4j

4.6 (9)
By: Scifo

Overview of this book

Neo4j is a graph database that includes plugins to run complex graph algorithms. The book starts with an introduction to the basics of graph analytics, the Cypher query language, and graph architecture components, and helps you to understand why enterprises have started to adopt graph analytics within their organizations. You’ll find out how to implement Neo4j algorithms and techniques and explore various graph analytics methods to reveal complex relationships in your data. You’ll be able to implement graph analytics catering to different domains such as fraud detection, graph-based search, recommendation systems, social networking, and data management. You’ll also learn how to store data in graph databases and extract valuable insights from it. As you become well-versed with the techniques, you’ll discover graph machine learning in order to address simple to complex challenges using Neo4j. You will also understand how to use graph data in a machine learning model in order to make predictions based on your data. Finally, you’ll get to grips with structuring a web application for production using Neo4j. By the end of this book, you’ll not only be able to harness the power of graphs to handle a broad range of problem areas, but you’ll also have learned how to use Neo4j efficiently to identify complex relationships in your data.
Table of Contents (18 chapters)
close
1
Section 1: Graph Modeling with Neo4j
5
Section 2: Graph Algorithms
10
Section 3: Machine Learning on Graphs
14
Section 4: Neo4j for Production

Extracting embeddings from artificial neural networks

Neural networks are the new gold standard of models for machine learning. Thanks to this structure, impressive progress has been made, from image analysis to speech recognition, and computers are now able to perform increasingly complex tasks. One surprising application of neural networks is their ability to model complex objects, such as images, text, or audio records, with fewer dimensions, while still preserving some aspects of the original dataset (shapes in the image, frequencies in the audio, and so on). In this section, following a quick general review of neural networks, we will focus on one architecture called skip-gram, which was first used in the context of word embedding but can be extended to graphs as well.

Artificial neural networks in a nutshell

Artificial neural networks were inspired by the human brain, where millions of neurons are connected to each other through synapses. The human brain is clearly adept at learning...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete