Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Security Tokens and Stablecoins Quick Start Guide
  • Toc
  • feedback
Security Tokens and Stablecoins Quick Start Guide

Security Tokens and Stablecoins Quick Start Guide

By : Sun, Xun (Brian) Wu, Angela Kwok
4 (2)
close
Security Tokens and Stablecoins Quick Start Guide

Security Tokens and Stablecoins Quick Start Guide

4 (2)
By: Sun, Xun (Brian) Wu, Angela Kwok

Overview of this book

The failure of initial coin offerings (ICOs) is no accident, as most ICOs do not link to a real asset and are not regulated. Realizing the shortcomings of ICOs, the blockchain community and potential investors embraced security token offerings (STOs) and stablecoins enthusiastically. In this book, we start with an overview of the blockchain technology along with its basic concepts. We introduce the concept behind STO, and cover the basic requirements for launching a STO and the relevant regulations governing its issuance. We discuss U.S. securities laws development in launching security digital tokens using blockchain technology and show some real use cases. We also explore the process of STO launches and legal considerations. We introduce popular security tokens in the current blockchain space and talk about how to develop a security token DApp, including smart contract development for ERC1404 tokens. Later, you'll learn to build frontend side functionalities to interact with smart contracts. Finally, we discuss stablecoin technical design functionalities for issuing and operating STO tokens by interacting with Ethereum smart contracts. By the end of this book, you will have learned more about STOs and gained a detailed knowledge of building relevant applications—all with the help of practical examples.
Table of Contents (9 chapters)
close

Miscellaneous comments

Ethereum has three main ingredients:

  • Decentralization: For guaranteed execution
  • Hashes: For safeguarding the world state
  • Signature: For authorizing programs and transactions

Some other useful, Ethereum-specific facts are listed as follows:

  • Like a transaction, a digital signature is required for deploying a smart contract. A deployed smart contract is permanent and is immutable.
  • A smart contract is assigned an address. If a smart contract has a bug, the corrected smart contract will be deployed with a newly assigned address, and therefore it is treated as a completely new smart contract. In other words, the corrected contract has no relationship to the old one. Consequently, the history of the old smart contract gets lost.
  • Unlike a full node, a light node does not store the whole distributed ledger, but it stores the parts it cares about from someone it trusts.
  • Since smart contract scripts are stored at nodes worldwide, it provides an additional layer of security.
  • Ethereum provides fault tolerance. As long as at least one full node survives during a catastrophic attack, the network can be rebuilt from the surviving node and grows to a full network.
  • The scalability issue is one of the main criticisms of Ethereum, as all full nodes run the same smart contract code.
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete