
Python Deep Learning
By :

In this section, we’ll try to classify the images of the CIFAR-10 dataset with both PyTorch and Keras. It consists of 60,000 32x32 RGB images, divided into 10 classes of objects. To understand these examples, we’ll first focus on two prerequisites that we haven’t covered until now: how images are represented in DL libraries and data augmentation training techniques.
PyTorch, Keras, and TensorFlow (TF) have out-of-the-gate support for 1D, 2D, and 3D convolutions. The inputs and outputs of the convolution operation are tensors. A 1D convolution with multiple input/output slices would have 3D input and output tensors. Their axes can be in either SCW or SWC order, where we have the following:
In the same way, a 2D convolution will...