Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Kibana 8.x – A Quick Start Guide to Data Analysis
  • Table Of Contents Toc
  • Feedback & Rating feedback
Kibana 8.x – A Quick Start Guide to Data Analysis

Kibana 8.x – A Quick Start Guide to Data Analysis

By : Shah
5 (3)
close
close
Kibana 8.x – A Quick Start Guide to Data Analysis

Kibana 8.x – A Quick Start Guide to Data Analysis

5 (3)
By: Shah

Overview of this book

Unleash the full potential of Kibana—an indispensable tool for data analysts to seamlessly explore vast datasets, uncover key insights, identify trends and anomalies, and share results. This book guides you through its user-friendly interface, interactive visualizations, and robust features, including real-time data monitoring and advanced analytics, showing you how Kibana revolutionizes your approach to navigating and analyzing complex datasets. Starting with the foundational steps of installing, configuring, and running Kibana, this book progresses systematically to explain the search and data visualization capabilities for data stored in the Elasticsearch cluster. You’ll then delve into the practical details of creating data views and optimizing spaces to better organize the analysis environment. As you advance, you'll get to grips with using the discover interface and learn how to build different types of extensive visualizations using Lens. By the end of this book, you’ll have a complete understanding of how Kibana works, helping you leverage its capabilities to build an analytics and visualization solution from scratch for your data-driven use case.
Table of Contents (17 chapters)
close
close
Free Chapter
1
Part 1: Exploring Kibana
5
Part 2: Visualizations in Kibana
8
Part 3: Analytics on a Dashboard
12
Part 4: Querying on Kibana and Advanced Concepts

Understanding anomaly detection in time series data

Anomaly detection is the process of identifying the points in data that don’t fit the normal data behavioral patterns. To make this effective, we can automate the whole process. The important point to note here is that this process will be more efficient when the size of the data has increased. The Elastic Stack supports several data analysis use cases that use supervised and unsupervised machine learning, as follows:

  • Anomaly detection
  • Outlier detection
  • Fraud detection
  • Forecasting
  • Language detection

Our main intention behind putting various techniques to use is to bring out the insights from the most normal-looking data. When we look into anomaly detection, we identify patterns and unusual behavior in the near real-time current and historical data. An unusual data point can be seen in the form of a high spike or very low data behavior, as shown here:

Figure 6.1 – A spike (unusual data behavior) in a sample anomaly detection job in the machine learning app, Kibana

Figure 6.1 –...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY