Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Codeless Time Series Analysis with KNIME
  • Toc
  • feedback
Codeless Time Series Analysis with KNIME

Codeless Time Series Analysis with KNIME

By : KNIME AG , Corey Weisinger, Maarit Widmann, Daniele Tonini
4.8 (10)
close
Codeless Time Series Analysis with KNIME

Codeless Time Series Analysis with KNIME

4.8 (10)
By: KNIME AG , Corey Weisinger, Maarit Widmann, Daniele Tonini

Overview of this book

This book will take you on a practical journey, teaching you how to implement solutions for many use cases involving time series analysis techniques. This learning journey is organized in a crescendo of difficulty, starting from the easiest yet effective techniques applied to weather forecasting, then introducing ARIMA and its variations, moving on to machine learning for audio signal classification, training deep learning architectures to predict glucose levels and electrical energy demand, and ending with an approach to anomaly detection in IoT. There’s no time series analysis book without a solution for stock price predictions and you’ll find this use case at the end of the book, together with a few more demand prediction use cases that rely on the integration of KNIME Analytics Platform and other external tools. By the end of this time series book, you’ll have learned about popular time series analysis techniques and algorithms, KNIME Analytics Platform, its time series extension, and how to apply both to common use cases.
Table of Contents (20 chapters)
close
1
Part 1: Time Series Basics and KNIME Analytics Platform
7
Part 2: Building and Deploying a Forecasting Model
14
Part 3: Forecasting on Mixed Platforms

Questions

The answers to the following questions can be found in the Assessment section at the end of the book:

  1. What is a discrete Time Series?
    1. A collection of observations made continuously over time.
    2. A series where there can be an infinite number of observations in a given time range.
    3. A collection of observations that are sampled regularly at specific times, typically equally spaced.
    4. A series where observations follow a Bernoulli distribution.
  2. Which of the following is not a typical goal pursued in Time Series Analysis?
    1. Causal effect discovery and simulation.
    2. Function approximation.
    3. Anomaly detection and process control.
    4. Forecasting.
  3. Which is a basic requirement to develop a reliable quantitative forecasting model?
    1. Obtain an adequate number of historical observations.
    2. Collect time-independent observations.
    3. Collect a time series that shows a trend.
    4. Obtain a time series without gaps and outliers.
  4. Which of the following is not a group of methods typically used in quantitative Time Series Forecasting?
    1. Classical univariate methods.
    2. Machine learning techniques.
    3. Explanatory models.
    4. Direct clustering algorithms.
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete