Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Elasticsearch 8.x Cookbook
  • Toc
  • feedback
Elasticsearch 8.x Cookbook

Elasticsearch 8.x Cookbook

By : Alberto Paro
4 (6)
close
Elasticsearch 8.x Cookbook

Elasticsearch 8.x Cookbook

4 (6)
By: Alberto Paro

Overview of this book

Elasticsearch is a Lucene-based distributed search engine at the heart of the Elastic Stack that allows you to index and search unstructured content with petabytes of data. With this updated fifth edition, you'll cover comprehensive recipes relating to what's new in Elasticsearch 8.x and see how to create and run complex queries and analytics. The recipes will guide you through performing index mapping, aggregation, working with queries, and scripting using Elasticsearch. You'll focus on numerous solutions and quick techniques for performing both common and uncommon tasks such as deploying Elasticsearch nodes, using the ingest module, working with X-Pack, and creating different visualizations. As you advance, you'll learn how to manage various clusters, restore data, and install Kibana to monitor a cluster and extend it using a variety of plugins. Furthermore, you'll understand how to integrate your Java, Scala, Python, and big data applications such as Apache Spark and Pig with Elasticsearch and create efficient data applications powered by enhanced functionalities and custom plugins. By the end of this Elasticsearch cookbook, you'll have gained in-depth knowledge of implementing the Elasticsearch architecture and be able to manage, search, and store data efficiently and effectively using Elasticsearch.
Table of Contents (20 chapters)
close

Using the Dense Vector field type

Elasticsearch is often used to store machine learning data for training algorithms. X-Pack provides the Dense Vector field to store vectors that have up to 2,048 dimension values.

Getting ready

You will need an up-and-running Elasticsearch installation, as we described in the Downloading and installing Elasticsearch recipe of Chapter 1Getting Started.

To execute the commands in this recipe, you can use any HTTP client, such as curl (https://curl.haxx.se/), Postman (https://www.getpostman.com/), or similar. I suggest using the Kibana console, which provides code completion and better character escaping for Elasticsearch.

How to do it…

We want to use Elasticsearch to store a vector of values for our machine learning models. To achieve this, follow these steps:

  1. To create an index to store a vector of values, we will use the following mapping:
    PUT test-dvector
    { "mappings": {
        "properties": {
          "vector": { "type": "dense_vector", "dims": 4 },
          "model": { "type": "keyword" } } } }
  2. Now, we can store a document to test the mapping:
    POST test-dvector/_doc/1
    { "model":"pipe_flood", "vector" : [8.1, 8.3, 12.1, 7.32] }

How it works...

The Dense Vector field is a helper field for storing vectors in Elasticsearch.

The ingested data for the field must be a list of floating-point values with the exact dimension of the value provided by the dims property of the mapping (4, in our example).

If the dimension of the vector field is incorrect, an exception is raised, and the document is not indexed.

For example, let's see what happens when we try to index a similar document with the wrong feature dimension:

POST test-dvector/_doc/1
{ "model":"pipe_flood", "vector" : [8.1, 8.3, 12.1] }

We will see a similar exception that enforces the right dimension size. Here, the document will not be stored:

{
  "error" : {
    "root_cause" : [
      {
        "type" : "mapper_parsing_exception",
        "reason" : "failed to parse"
      }
    ],
    "type" : "mapper_parsing_exception",
    "reason" : "failed to parse",
    "caused_by" : {
      "type" : "illegal_argument_exception",
      "reason" : "Field [vector] of type [dense_vector] of doc [1] has number of dimensions [3] less than defined in the mapping [4]"
    }
  },
  "status" : 400
}
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete