Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Azure Data Scientist Associate Certification Guide
  • Toc
  • feedback
Azure Data Scientist Associate Certification Guide

Azure Data Scientist Associate Certification Guide

By : Andreas Botsikas , Hlobil
4.5 (11)
close
Azure Data Scientist Associate Certification Guide

Azure Data Scientist Associate Certification Guide

4.5 (11)
By: Andreas Botsikas , Hlobil

Overview of this book

The Azure Data Scientist Associate Certification Guide helps you acquire practical knowledge for machine learning experimentation on Azure. It covers everything you need to pass the DP-100 exam and become a certified Azure Data Scientist Associate. Starting with an introduction to data science, you'll learn the terminology that will be used throughout the book and then move on to the Azure Machine Learning (Azure ML) workspace. You'll discover the studio interface and manage various components, such as data stores and compute clusters. Next, the book focuses on no-code and low-code experimentation, and shows you how to use the Automated ML wizard to locate and deploy optimal models for your dataset. You'll also learn how to run end-to-end data science experiments using the designer provided in Azure ML Studio. You'll then explore the Azure ML Software Development Kit (SDK) for Python and advance to creating experiments and publishing models using code. The book also guides you in optimizing your model's hyperparameters using Hyperdrive before demonstrating how to use responsible AI tools to interpret and debug your models. Once you have a trained model, you'll learn to operationalize it for batch or real-time inferences and monitor it in production. By the end of this Azure certification study guide, you'll have gained the knowledge and the practical skills required to pass the DP-100 exam.
Table of Contents (17 chapters)
close
1
Section 1: Starting your cloud-based data science journey
6
Section 2: No code data science experimentation
9
Section 3: Advanced data science tooling and capabilities

Creating responsible machine learning models

Machine learning allows you to create models that can influence decisions and shape the future. With great power comes great responsibility, and this is where AI governance becomes a necessity, something commonly referred to as responsible AI principles and practices. Azure Machine Learning offers tools to support the responsible creation of AI under the following three pillars:

  • Understand: Before publishing any machine learning model, you need to be able to interpret and explain the model's behavior. Moreover, you need to assess and mitigate potential model unfairness against specific cohorts. This chapter focuses on the tools that assist you in understanding your models.
  • Protect: Here, you put mechanisms in place to protect people and their data. When training a model, data from real people is used. For example, in Chapter 8, Experimenting with Python Code, you trained a model on top of medical data from diabetic patients...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete