Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying OpenCV 4 with Python Blueprints
  • Table Of Contents Toc
  • Feedback & Rating feedback
OpenCV 4 with Python Blueprints

OpenCV 4 with Python Blueprints

By : Dr. Menua Gevorgyan , Michael Beyeler (USD), Mamikonyan, Michael Beyeler
5 (4)
close
close
OpenCV 4 with Python Blueprints

OpenCV 4 with Python Blueprints

5 (4)
By: Dr. Menua Gevorgyan , Michael Beyeler (USD), Mamikonyan, Michael Beyeler

Overview of this book

OpenCV is a native cross-platform C++ library for computer vision, machine learning, and image processing. It is increasingly being adopted in Python for development. This book will get you hands-on with a wide range of intermediate to advanced projects using the latest version of the framework and language, OpenCV 4 and Python 3.8, instead of only covering the core concepts of OpenCV in theoretical lessons. This updated second edition will guide you through working on independent hands-on projects that focus on essential OpenCV concepts such as image processing, object detection, image manipulation, object tracking, and 3D scene reconstruction, in addition to statistical learning and neural networks. You’ll begin with concepts such as image filters, Kinect depth sensor, and feature matching. As you advance, you’ll not only get hands-on with reconstructing and visualizing a scene in 3D but also learn to track visually salient objects. The book will help you further build on your skills by demonstrating how to recognize traffic signs and emotions on faces. Later, you’ll understand how to align images, and detect and track objects using neural networks. By the end of this OpenCV Python book, you’ll have gained hands-on experience and become proficient at developing advanced computer vision apps according to specific business needs.
Table of Contents (14 chapters)
close
close
11
Profiling and Accelerating Your Apps
12
Setting Up a Docker Container

What this book covers

Chapter 1, Fun with Filters, explores a number of interesting image filters (such as a black-and-white pencil sketch, warming/cooling filters, and a cartoonizer effect), and we'll apply them to the video stream of a webcam in real time.

Chapter 2, Hand Gesture Recognition Using a Kinect Depth Sensor, helps you develop an app to detect and track simple hand gestures in real time using the output of a depth sensor, such as Microsoft Kinect 3D Sensor or Asus Xtion.

Chapter 3, Finding Objects via Feature Matching and Perspective Transforms, helps you develop an app to detect an arbitrary object of interest in the video stream of a webcam, even if the object is viewed from different angles or distances, or under partial occlusion.

Chapter 4, 3D Scene Reconstruction Using Structure from Motion, shows you how to reconstruct and visualize a scene in 3D by inferring its geometrical features from camera motion.

Chapter 5, Using Computational Photography with OpenCV, helps you develop command-line scripts that take images as input and produce panoramas or High Dynamic Range (HDR) images. The scripts will either align the images so that there is a pixel-to-pixel correspondence or stitch them creating a panorama, which is an interesting application of image alignment. In a panorama, the two images are not that of a plane but that of a 3D scene. In general, 3D alignment requires depth information. However, when the two images are taken by rotating the camera about its optical axis (as in the case of panoramas), we can align two images of a panorama.

Chapter 6, Tracking Visually Salient Objects, helps you develop an app to track multiple visually salient objects in a video sequence (such as all the players on the field during a soccer match) at once.

Chapter 7, Learning to Recognize Traffic Signs, shows you how to train a support vector machine to recognize traffic signs from the German Traffic Sign Recognition Benchmark (GTSRB) dataset.

Chapter 8, Learning to Recognize Facial Emotions, helps you develop an app that is able to both detect faces and recognize their emotional expressions in the video stream of a webcam in real time.

Chapter 9, Learning to Recognize Facial Emotions, walks you through developing an app for real-time object classification with deep convolutional neural networks. You will modify a classifier network to train on a custom dataset with custom classes. You will learn how to train a Keras model on a dataset and how to serialize and save your Keras model to a disk. You will then see how to classify new input images using your loaded Keras model. You will train a convolutional neural network using the image data you have to get a good classifier that will have very high accuracy.

Chapter 10, Learning to Detect and Track Objects, guides you as you develop an app for real-time object detection with deep neural networks, connecting it to a tracker. You will learn how object detectors work and how they are trained. You will implement a Kalman filter-based tracker, which will use object position and velocity to predict where it is likely to be. After completing this chapter, you will be able to build your own real-time object detection and tracking applications.

Appendix A, Profiling and Accelerating Your Apps, covers how to find bottlenecks in an app and achieve CPU- and CUDA-based GPU acceleration of existing code with Numba.

Appendix B, Setting Up a Docker Container, walks you through replicating the environment that we have used to run the code in this book.

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY