Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Python Machine Learning By Example
By :

Python Machine Learning By Example
By:
Overview of this book
The surge in interest in machine learning (ML) is due to the fact that it revolutionizes automation by learning patterns in data and using them to make predictions and decisions. If you’re interested in ML, this book will serve as your entry point to ML.
Python Machine Learning By Example begins with an introduction to important ML concepts and implementations using Python libraries. Each chapter of the book walks you through an industry adopted application. You’ll implement ML techniques in areas such as exploratory data analysis, feature engineering, and natural language processing (NLP) in a clear and easy-to-follow way.
With the help of this extended and updated edition, you’ll understand how to tackle data-driven problems and implement your solutions with the powerful yet simple Python language and popular Python packages and tools such as TensorFlow, scikit-learn, gensim, and Keras. To aid your understanding of popular ML algorithms, the book covers interesting and easy-to-follow examples such as news topic modeling and classification, spam email detection, stock price forecasting, and more.
By the end of the book, you’ll have put together a broad picture of the ML ecosystem and will be well-versed with the best practices of applying ML techniques to make the most out of new opportunities.
Table of Contents (15 chapters)
Preface
Section 1: Fundamentals of Machine Learning
Getting Started with Machine Learning and Python
Section 2: Practical Python Machine Learning By Example
Exploring the 20 Newsgroups Dataset with Text Analysis Techniques
Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling Algorithms
Detecting Spam Email with Naive Bayes
Classifying Newsgroup Topics with Support Vector Machines
Predicting Online Ad Click-Through with Tree-Based Algorithms
Predicting Online Ad Click-Through with Logistic Regression
Scaling Up Prediction to Terabyte Click Logs
Stock Price Prediction with Regression Algorithms
Section 3: Python Machine Learning Best Practices
Machine Learning Best Practices
Other Books You May Enjoy
How would like to rate this book
Customer Reviews