Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Deep Learning for IoT
  • Toc
  • feedback
Hands-On Deep Learning for IoT

Hands-On Deep Learning for IoT

By : Dr. Mohammad Abdur Razzaque, Md. Rezaul Karim
4 (1)
close
Hands-On Deep Learning for IoT

Hands-On Deep Learning for IoT

4 (1)
By: Dr. Mohammad Abdur Razzaque, Md. Rezaul Karim

Overview of this book

Artificial Intelligence is growing quickly, which is driven by advancements in neural networks(NN) and deep learning (DL). With an increase in investments in smart cities, smart healthcare, and industrial Internet of Things (IoT), commercialization of IoT will soon be at peak in which massive amounts of data generated by IoT devices need to be processed at scale. Hands-On Deep Learning for IoT will provide deeper insights into IoT data, which will start by introducing how DL fits into the context of making IoT applications smarter. It then covers how to build deep architectures using TensorFlow, Keras, and Chainer for IoT. You’ll learn how to train convolutional neural networks(CNN) to develop applications for image-based road faults detection and smart garbage separation, followed by implementing voice-initiated smart light control and home access mechanisms powered by recurrent neural networks(RNN). You’ll master IoT applications for indoor localization, predictive maintenance, and locating equipment in a large hospital using autoencoders, DeepFi, and LSTM networks. Furthermore, you’ll learn IoT application development for healthcare with IoT security enhanced. By the end of this book, you will have sufficient knowledge need to use deep learning efficiently to power your IoT-based applications for smarter decision making.
Table of Contents (15 chapters)
close
Free Chapter
1
Section 1: IoT Ecosystems, Deep Learning Techniques, and Frameworks
4
Section 2: Hands-On Deep Learning Application Development for IoT
10
Section 3: Advanced Aspects and Analytics in IoT

Summary

Automatic human physiological and psychological state detection is becoming a popular means by which people can learn a person's physical and mental state to interact and react accordingly. There are many applications within smart education, healthcare, and entertainment where these state detection techniques can be useful. Machine learning and DL algorithms are essential for these detection techniques. In the first part of this chapter, we briefly described different IoT applications using human physiological and psychological state detection. We also briefly discussed two potential use cases of IoT where DL algorithms can be useful in human physiological and psychological state detection. The first use case considers an IoT-based remote physiotherapy progress monitoring system. The second use case is an IoT-based smart classroom application that uses facial expressions...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete