Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Generative Adversarial Networks with Keras
  • Table Of Contents Toc
  • Feedback & Rating feedback
Hands-On Generative Adversarial Networks with Keras

Hands-On Generative Adversarial Networks with Keras

By : Rafael Valle
1.5 (2)
close
close
Hands-On Generative Adversarial Networks with Keras

Hands-On Generative Adversarial Networks with Keras

1.5 (2)
By: Rafael Valle

Overview of this book

Generative Adversarial Networks (GANs) have revolutionized the fields of machine learning and deep learning. This book will be your first step toward understanding GAN architectures and tackling the challenges involved in training them. This book opens with an introduction to deep learning and generative models and their applications in artificial intelligence (AI). You will then learn how to build, evaluate, and improve your first GAN with the help of easy-to-follow examples. The next few chapters will guide you through training a GAN model to produce and improve high-resolution images. You will also learn how to implement conditional GANs that enable you to control characteristics of GAN output. You will build on your knowledge further by exploring a new training methodology for progressive growing of GANs. Moving on, you'll gain insights into state-of-the-art models in image synthesis, speech enhancement, and natural language generation using GANs. In addition to this, you'll be able to identify GAN samples with TequilaGAN. By the end of this book, you will be well-versed with the latest advancements in the GAN framework using various examples and datasets, and you will have developed the skills you need to implement GAN architectures for several tasks and domains, including computer vision, natural language processing (NLP), and audio processing. Foreword by Ting-Chun Wang, Senior Research Scientist, NVIDIA
Table of Contents (14 chapters)
close
close
Free Chapter
1
Section 1: Introduction and Environment Setup
4
Section 2: Training GANs
8
Section 3: Application of GANs in Computer Vision, Natural Language Processing, and Audio

Deep Learning Basics and Environment Setup

In this chapter, we offer you essential knowledge for building and training deep learning models, including Generative Adversarial Networks (GANs). We are going to explain the basics of deep learning, starting with a simple example of a learning algorithm based on linear regression. We will also provide instructions on how to set up a deep learning programming environment using Python and Keras. We will also talk about the importance of computing power in deep learning; we are going to describe guidelines to fully take advantage of NVIDIA GPUs by maximizing the memory footprint, enabling the CUDA Deep Neural Network library (cuDNN), and eventually using distributed training setups with multiple GPUs. Finally, in addition to installing the libraries that will be necessary for upcoming projects in this book, you will test your installation...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY