Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Exploratory Data Analysis with Python
  • Toc
  • feedback
Hands-On Exploratory Data Analysis with Python

Hands-On Exploratory Data Analysis with Python

By : Kumar Mukhiya, Ahmed
2.5 (2)
close
Hands-On Exploratory Data Analysis with Python

Hands-On Exploratory Data Analysis with Python

2.5 (2)
By: Kumar Mukhiya, Ahmed

Overview of this book

Exploratory Data Analysis (EDA) is an approach to data analysis that involves the application of diverse techniques to gain insights into a dataset. This book will help you gain practical knowledge of the main pillars of EDA - data cleaning, data preparation, data exploration, and data visualization. You’ll start by performing EDA using open source datasets and perform simple to advanced analyses to turn data into meaningful insights. You’ll then learn various descriptive statistical techniques to describe the basic characteristics of data and progress to performing EDA on time-series data. As you advance, you’ll learn how to implement EDA techniques for model development and evaluation and build predictive models to visualize results. Using Python for data analysis, you’ll work with real-world datasets, understand data, summarize its characteristics, and visualize it for business intelligence. By the end of this EDA book, you’ll have developed the skills required to carry out a preliminary investigation on any dataset, yield insights into data, present your results with visual aids, and build a model that correctly predicts future outcomes.
Table of Contents (17 chapters)
close
1
Section 1: The Fundamentals of EDA
6
Section 2: Descriptive Statistics
11
Section 3: Model Development and Evaluation

Introducing correlation

Any dataset that we want to analyze will have different fields (that is, columns) of multiple observations (that is, variables) representing different facts. The columns of a dataset are, most probably, related to one another because they are collected from the same event. One field of record may or may not affect the value of another field. To examine the type of relationships these columns have and to analyze the causes and effects between them, we have to work to find the dependencies that exist among variables. The strength of such a relationship between two fields of a dataset is called correlation, which is represented by a numerical value between -1 and 1.

In other words, the statistical technique that examines the relationship and explains whether, and how strongly, pairs of variables are related to one another is known as correlation. Correlation...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete