Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Mastering Machine Learning on AWS
  • Toc
  • feedback
Mastering Machine Learning on AWS

Mastering Machine Learning on AWS

By : Dr. Saket S.R. Mengle , Maximo Gurmendez
4.3 (8)
close
Mastering Machine Learning on AWS

Mastering Machine Learning on AWS

4.3 (8)
By: Dr. Saket S.R. Mengle , Maximo Gurmendez

Overview of this book

Amazon Web Services (AWS) is constantly driving new innovations that empower data scientists to explore a variety of machine learning (ML) cloud services. This book is your comprehensive reference for learning and implementing advanced ML algorithms in AWS cloud. As you go through the chapters, you’ll gain insights into how these algorithms can be trained, tuned, and deployed in AWS using Apache Spark on Elastic Map Reduce (EMR), SageMaker, and TensorFlow. While you focus on algorithms such as XGBoost, linear models, factorization machines, and deep nets, the book will also provide you with an overview of AWS as well as detailed practical applications that will help you solve real-world problems. Every application includes a series of companion notebooks with all the necessary code to run on AWS. In the next few chapters, you will learn to use SageMaker and EMR Notebooks to perform a range of tasks, right from smart analytics and predictive modeling through to sentiment analysis. By the end of this book, you will be equipped with the skills you need to effectively handle machine learning projects and implement and evaluate algorithms on AWS.
Table of Contents (24 chapters)
close
Free Chapter
1
Section 1: Machine Learning on AWS
3
Section 2: Implementing Machine Learning Algorithms at Scale on AWS
9
Section 3: Deep Learning
13
Section 4: Integrating Ready-Made AWS Machine Learning Services
17
Section 5: Optimizing and Deploying Models through AWS
Appendix: Getting Started with AWS

Customer Segmentation Using Clustering Algorithms

This chapter will introduce the main clustering algorithms by exploring how to apply them to customer segmentation based on their behavioral patterns. In particular, we will demonstrate how Apache Spark and Amazon SageMaker can seamlessly interoperate to perform clustering. Throughout this chapter, we will be using the Kaggle Dataset E-Commerce data from Fabien Daniel, which can be downloaded from https://www.kaggle.com/fabiendaniel/customer-segmentation/data.

Let's take a look at the topics we will be covering:

  • Understanding how clustering algorithms work
  • Clustering with Apache Spark on Elastic MapReduce (EMR)
  • Clustering using SageMaker through Spark integration

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete