Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Deep Learning
  • Table Of Contents Toc
  • Feedback & Rating feedback
Python Deep Learning

Python Deep Learning

By : Vasilev, Daniel Slater, Spacagna, Roelants, Zocca
4 (8)
close
close
Python Deep Learning

Python Deep Learning

4 (8)
By: Vasilev, Daniel Slater, Spacagna, Roelants, Zocca

Overview of this book

With the surge in artificial intelligence in applications catering to both business and consumer needs, deep learning is more important than ever for meeting current and future market demands. With this book, you’ll explore deep learning, and learn how to put machine learning to use in your projects. This second edition of Python Deep Learning will get you up to speed with deep learning, deep neural networks, and how to train them with high-performance algorithms and popular Python frameworks. You’ll uncover different neural network architectures, such as convolutional networks, recurrent neural networks, long short-term memory (LSTM) networks, and capsule networks. You’ll also learn how to solve problems in the fields of computer vision, natural language processing (NLP), and speech recognition. You'll study generative model approaches such as variational autoencoders and Generative Adversarial Networks (GANs) to generate images. As you delve into newly evolved areas of reinforcement learning, you’ll gain an understanding of state-of-the-art algorithms that are the main components behind popular games Go, Atari, and Dota. By the end of the book, you will be well-versed with the theory of deep learning along with its real-world applications.
Table of Contents (12 chapters)
close
close

Q-learning in action

In this section, we'll use Q-learning in combination with a simple neural network to control an agent in the cart-pole task. We'll use an ε-greedy policy and experience replay. This is a classic RL problem. The agent must balance a pole attached to the cart via a joint. At every step, the agent can move the cart left or right. It receives a reward of 1 every time step that the pole is balanced. If the pole deviates by more than 15 degrees from upright, the game ends:

The cart-pole task

To help us with this, we'll use OpenAI Gym (https://gym.openai.com/), which is an open source toolkit for the development and comparison of RL algorithms. It allows us to teach agents over various tasks, such as walking or playing games such as Pong, Pinball, other Atari games, and even Doom.

We can install it with pip:

    pip install gym[all]

Next, let...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY