Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Data Analysis with Scala
  • Table Of Contents Toc
  • Feedback & Rating feedback
Hands-On Data Analysis with Scala

Hands-On Data Analysis with Scala

By : Gupta
5 (3)
close
close
Hands-On Data Analysis with Scala

Hands-On Data Analysis with Scala

5 (3)
By: Gupta

Overview of this book

Efficient business decisions with an accurate sense of business data helps in delivering better performance across products and services. This book helps you to leverage the popular Scala libraries and tools for performing core data analysis tasks with ease. The book begins with a quick overview of the building blocks of a standard data analysis process. You will learn to perform basic tasks like Extraction, Staging, Validation, Cleaning, and Shaping of datasets. You will later deep dive into the data exploration and visualization areas of the data analysis life cycle. You will make use of popular Scala libraries like Saddle, Breeze, Vegas, and PredictionIO for processing your datasets. You will learn statistical methods for deriving meaningful insights from data. You will also learn to create applications for Apache Spark 2.x on complex data analysis, in real-time. You will discover traditional machine learning techniques for doing data analysis. Furthermore, you will also be introduced to neural networks and deep learning from a data analysis standpoint. By the end of this book, you will be capable of handling large sets of structured and unstructured data, perform exploratory analysis, and building efficient Scala applications for discovering and delivering insights
Table of Contents (14 chapters)
close
close
Free Chapter
1
Section 1: Scala and Data Analysis Life Cycle
7
Section 2: Advanced Data Analysis and Machine Learning
10
Section 3: Real-Time Data Analysis and Scalability

Streaming a k-means clustering algorithm using Spark

The k-means algorithm is an unsupervised machine learning (ML) clustering algorithm. The objective of this algorithm is to build k centers around which data points are centered, thereby forming k clusters. The most common implementation of this algorithm is generally done using batch-oriented processing. Streaming-based clustering algorithms are also available for this, with the following properties:

  • The k clusters are built using initial data
  • As new data arrives in minibatches, existing k clusters are updated to compute new k clusters
  • It also possible to control the decay or decrease in the significance of older data

At a high level, the preceding steps are quite similar to the word count problem that we solved using the streaming solution. The goal of the k-means algorithm is to partition the data into k clusters. If the...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY