If the cost or loss is very high, then it means that our network is not predicting the correct output. So, our objective is to minimize the cost function so that our neural network predictions will be better. How can we minimize the cost function? That is, how can we minimize the loss/cost? We learned that the neural network makes predictions using forward propagation. So, if we can change some values in the forward propagation, we can predict the correct output and minimize the loss. But what values can we change in the forward propagation? Obviously, we can't change input and output. We are now left with weights and bias values. Remember that we just initialized weight matrices randomly. Since the weights are random, they are not going to be perfect. Now, we will update these weight matrices ( and
) in such a way that our neural network gives a correct...

Hands-On Deep Learning Algorithms with Python
By :

Hands-On Deep Learning Algorithms with Python
By:
Overview of this book
Deep learning is one of the most popular domains in the AI space that allows you to develop multi-layered models of varying complexities.
This book introduces you to popular deep learning algorithms—from basic to advanced—and shows you how to implement them from scratch using TensorFlow. Throughout the book, you will gain insights into each algorithm, the mathematical principles involved, and how to implement it in the best possible manner. The book starts by explaining how you can build your own neural networks, followed by introducing you to TensorFlow, the powerful Python-based library for machine learning and deep learning. Moving on, you will get up to speed with gradient descent variants, such as NAG, AMSGrad, AdaDelta, Adam, and Nadam. The book will then provide you with insights into recurrent neural networks (RNNs) and LSTM and how to generate song lyrics with RNN. Next, you will master the math necessary to work with convolutional and capsule networks, widely used for image recognition tasks. You will also learn how machines understand the semantics of words and documents using CBOW, skip-gram, and PV-DM. Finally, you will explore GANs, including InfoGAN and LSGAN, and autoencoders, such as contractive autoencoders and VAE.
By the end of this book, you will be equipped with all the skills you need to implement deep learning in your own projects.
Table of Contents (17 chapters)
Preface
Section 1: Getting Started with Deep Learning
Introduction to Deep Learning
Getting to Know TensorFlow
Section 2: Fundamental Deep Learning Algorithms
Gradient Descent and Its Variants
Generating Song Lyrics Using RNN
Improvements to the RNN
Demystifying Convolutional Networks
Learning Text Representations
Section 3: Advanced Deep Learning Algorithms
Generating Images Using GANs
Learning More about GANs
Reconstructing Inputs Using Autoencoders
Exploring Few-Shot Learning Algorithms
Assessments
Other Books You May Enjoy
How would like to rate this book
Customer Reviews