Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • TensorFlow: Powerful Predictive Analytics with TensorFlow
  • Toc
  • feedback
TensorFlow: Powerful Predictive Analytics with TensorFlow

TensorFlow: Powerful Predictive Analytics with TensorFlow

By : Karim
close
TensorFlow: Powerful Predictive Analytics with TensorFlow

TensorFlow: Powerful Predictive Analytics with TensorFlow

By: Karim

Overview of this book

Predictive analytics discovers hidden patterns from structured and unstructured data for automated decision making in business intelligence. Predictive decisions are becoming a huge trend worldwide, catering to wide industry sectors by predicting which decisions are more likely to give maximum results. TensorFlow, Google’s brainchild, is immensely popular and extensively used for predictive analysis. This book is a quick learning guide on all the three types of machine learning, that is, supervised, unsupervised, and reinforcement learning with TensorFlow. This book will teach you predictive analytics for high-dimensional and sequence data. In particular, you will learn the linear regression model for regression analysis. You will also learn how to use regression for predicting continuous values. You will learn supervised learning algorithms for predictive analytics. You will explore unsupervised learning and clustering using K-meansYou will then learn how to predict neighborhoods using K-means, and then, see another example of clustering audio clips based on their audio features. This book is ideal for developers, data analysts, machine learning practitioners, and deep learning enthusiasts who want to build powerful, robust, and accurate predictive models with the power of TensorFlow. This book is embedded with useful assessments that will help you revise the concepts you have learned in this book. This book is repurposed for this specific learning experience from material from Packt's Predictive Analytics with TensorFlow by Md. Rezaul Karim.
Table of Contents (6 chapters)
close

What's in It for Me?

Maps are vital for your journey, especially when you're holidaying in another continent. When it comes to learning, a roadmap helps you in giving a definitive path for progressing towards the goal. So, here you're presented with a roadmap before you begin your journey.

This book is meticulously designed and developed in order to empower you with all the right and relevant information on TensorFlow. We've created this Learning Path for you that consists of four lessons:

Lesson 1, From Data to Decisions – Getting Started with TensorFlow, provides a detailed description of the main TensorFlow features in a real-life problem, followed by detailed discussions about TensorFlow installation and configuration. It then covers computation graphs, data, and programming models before getting started with TensorFlow. The last part of the lesson contains an example of implementing linear regression model for predictive analytics.

Lesson 2, Putting Data in Place – Supervised Learning for Predictive Analytics, covers some TensorFlow-based supervised learning techniques from a theoretical and practical perspective. In particular, the linear regression model for regression analysis will be covered on a real dataset. It then shows how you could solve the Titanic survival problem using logistic regression, random forests, and SVMs for predictive analytics.

Lesson 3, Clustering Your Data – Unsupervised Learning for Predictive Analytics, digs deeper into predictive analytics and finds out how you can take advantage of it to cluster records belonging to the certain group or class for a dataset of unsupervised observations. It will then provide some practical examples of unsupervised learning. Particularly, clustering techniques using TensorFlow will be discussed with some hands-on examples.

Lesson 4, Using Reinforcement Learning for Predictive Analytics, talks about designing machine learning systems driven by criticism and rewards. It will show several examples on how to apply reinforcement learning algorithms for developing predictive models on real-life datasets.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete