Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Apache Hadoop 3 Quick Start Guide
  • Toc
  • feedback
Apache Hadoop 3 Quick Start Guide

Apache Hadoop 3 Quick Start Guide

By : Vijay Karambelkar
close
Apache Hadoop 3 Quick Start Guide

Apache Hadoop 3 Quick Start Guide

By: Vijay Karambelkar

Overview of this book

Apache Hadoop is a widely used distributed data platform. It enables large datasets to be efficiently processed instead of using one large computer to store and process the data. This book will get you started with the Hadoop ecosystem, and introduce you to the main technical topics, including MapReduce, YARN, and HDFS. The book begins with an overview of big data and Apache Hadoop. Then, you will set up a pseudo Hadoop development environment and a multi-node enterprise Hadoop cluster. You will see how the parallel programming paradigm, such as MapReduce, can solve many complex data processing problems. The book also covers the important aspects of the big data software development lifecycle, including quality assurance and control, performance, administration, and monitoring. You will then learn about the Hadoop ecosystem, and tools such as Kafka, Sqoop, Flume, Pig, Hive, and HBase. Finally, you will look at advanced topics, including real time streaming using Apache Storm, and data analytics using Apache Spark. By the end of the book, you will be well versed with different configurations of the Hadoop 3 cluster.
Table of Contents (10 chapters)
close

Streaming in MapReduce programming

The traditional MapReduce programming requires users to write map and reduction functions as per the specifications of the defined API. However, what if I already have a processing function written, and I want to federate the processing to my own function, still using the MapReduce concept over Hadoop's distributed File System? There is a possibility to solve this with the streaming and pipes functions of Apache Hadoop.

Hadoop streaming allows user to code their logic in any programming language such as C, C++, and Python, and it provides a hook for the custom logic to integrate with traditional MapReduce framework with no or minimal lines of Java code. The Hadoop streaming APIs allow users to run any scripts or executables outside of the traditional Java platform. This capability is similar to Unix's Pipe function (https://en.wikipedia...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete