Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Machine Learning for Cybersecurity
  • Table Of Contents Toc
  • Feedback & Rating feedback
Hands-On Machine Learning for Cybersecurity

Hands-On Machine Learning for Cybersecurity

By : Halder, Sinan Ozdemir
2.7 (6)
close
close
Hands-On Machine Learning for Cybersecurity

Hands-On Machine Learning for Cybersecurity

2.7 (6)
By: Halder, Sinan Ozdemir

Overview of this book

Cyber threats today are one of the costliest losses that an organization can face. In this book, we use the most efficient tool to solve the big problems that exist in the cybersecurity domain. The book begins by giving you the basics of ML in cybersecurity using Python and its libraries. You will explore various ML domains (such as time series analysis and ensemble modeling) to get your foundations right. You will implement various examples such as building system to identify malicious URLs, and building a program to detect fraudulent emails and spam. Later, you will learn how to make effective use of K-means algorithm to develop a solution to detect and alert you to any malicious activity in the network. Also learn how to implement biometrics and fingerprint to validate whether the user is a legitimate user or not. Finally, you will see how we change the game with TensorFlow and learn how deep learning is effective for creating models and training systems
Table of Contents (13 chapters)
close
close
Free Chapter
1
Basics of Machine Learning in Cybersecurity
5
Using Data Science to Catch Email Fraud and Spam

SVM to detect malicious URLs

We will now use another machine learning approach to detect malicious URLs. Support vector machines (SVMs) are a popular method for classifying whether a URL is malicious or benign.

An SVM model classifies data across two or more hyperplanes. The output of the model is a hyperplane that can be used to segregate the input dataset, as shown in the following graph:

We then import the required packages. The SVM package available in the sklearn package (as shown in the following code) is very useful for this purpose:

#use SVM
from sklearn.svm import SVC
svmModel = SVC()
svmModel.fit(X_train, y_train)
#lsvcModel = svm.LinearSVC.fit(X_train, y_train)
svmModel.score(X_test, y_test)

Once the model is trained with the SVM classifier, we will again load the model and the feature vector to predict the URL's nature using the model, as shown in the following code...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY