Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning for Mobile
  • Toc
  • feedback
Machine Learning for Mobile

Machine Learning for Mobile

By : Revathi Gopalakrishnan, Avinash Venkateswarlu
close
Machine Learning for Mobile

Machine Learning for Mobile

By: Revathi Gopalakrishnan, Avinash Venkateswarlu

Overview of this book

Machine learning presents an entirely unique opportunity in software development. It allows smartphones to produce an enormous amount of useful data that can be mined, analyzed, and used to make predictions. This book will help you master machine learning for mobile devices with easy-to-follow, practical examples. You will begin with an introduction to machine learning on mobiles and grasp the fundamentals so you become well-acquainted with the subject. You will master supervised and unsupervised learning algorithms, and then learn how to build a machine learning model using mobile-based libraries such as Core ML, TensorFlow Lite, ML Kit, and Fritz on Android and iOS platforms. In doing so, you will also tackle some common and not-so-common machine learning problems with regard to Computer Vision and other real-world domains. By the end of this book, you will have explored machine learning in depth and implemented on-device machine learning with ease, thereby gaining a thorough understanding of how to run, create, and build real-time machine-learning applications on your mobile devices.
Table of Contents (14 chapters)
close
12
Question and Answers

What this book covers

Chapter 1, Introduction to Machine Learning on Mobile, explains what machine learning is and why we should use it on mobile devices. It introduces different approaches to machine learning and their pro and cons.

Chapter 2, Supervised and Unsupervised Learning Algorithms, covers supervised and unsupervised approaches of machine learning algorithms. We will also learn about different algorithms, such as Naive Bayes, decision trees, SVM, clustering, associated mapping, and many more. 

Chapter 3, Random Forest on iOS, covers random forests and decision trees in depth and explains how to apply them to solve machine learning problems. We will also create an application using a decision tree to diagnose breast cancer.

Chapter 4TensorFlow Mobile in Android, introduces TensorFlow for mobile. We will also learn about the architecture of a mobile machine learning application and write an application using TensorFlow in Android. 

Chapter 5, Regression Using Core ML in iOS, explores regression and Core ML and shows how to apply it to solve a machine learning problem. We will be creating an application using scikit-learn to predict house prices. 

Chapter 6, ML Kit SDK, explores ML Kit and its benefits. We will be creating some image labeling applications using ML Kit and device and cloud APIs. 

Chapter 7, Spam Message Detection in iOS - Core ML, introduces natural language processing and the SVM algorithm. We will solve a problem of bulk SMS, that is, whether messages are spam or not. 

Chapter 8, Fritz, introduces the Fritz mobile machine learning platform. We will create an application using Fritz and Core ML in iOS. We will also see how Fritz can be used with the sample dataset we create earlier in the book. 

Chapter 9, Neural Networks on Mobile, covers the concepts of neural networks, Keras, and their applications in the field of mobile machine learning. We will be creating an application to recognize handwritten digits and also the TensorFlow image recognition model.

Chapter 10Mobile Application Using Google Cloud Vision, introduces the Google Cloud Vision label-detection technique in an Android application to determine what is in pictures taken by a camera.

Chapter 11Future of ML on Mobile Applications, covers the key features of mobile applications and the opportunities they provide for stakeholders.

Appendix, Question and Answers, contains questions that may be on your mind and tries to provide answers to those questions.

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete