Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Practical Computer Vision
  • Toc
  • feedback
Practical Computer Vision

Practical Computer Vision

By : Abhinav Dadhich
1.5 (2)
close
Practical Computer Vision

Practical Computer Vision

1.5 (2)
By: Abhinav Dadhich

Overview of this book

In this book, you will find several recently proposed methods in various domains of computer vision. You will start by setting up the proper Python environment to work on practical applications. This includes setting up libraries such as OpenCV, TensorFlow, and Keras using Anaconda. Using these libraries, you'll start to understand the concepts of image transformation and filtering. You will find a detailed explanation of feature detectors such as FAST and ORB; you'll use them to find similar-looking objects. With an introduction to convolutional neural nets, you will learn how to build a deep neural net using Keras and how to use it to classify the Fashion-MNIST dataset. With regard to object detection, you will learn the implementation of a simple face detector as well as the workings of complex deep-learning-based object detectors such as Faster R-CNN and SSD using TensorFlow. You'll get started with semantic segmentation using FCN models and track objects with Deep SORT. Not only this, you will also use Visual SLAM techniques such as ORB-SLAM on a standard dataset. By the end of this book, you will have a firm understanding of the different computer vision techniques and how to apply them in your applications.
Table of Contents (12 chapters)
close

Revisiting the convolution operation

Extending our discussion on filters from Chapter 3, Image Filtering and Transformations in OpenCV, the convolution operation is taking a dot product of a shifted kernel matrix with a given input image. This process is explained in the following figure:

As shown in the previous figure, a kernel is a small two-dimensional array that computes dot product with the input image (on the left) to create a block of the output image (on the right).

In convolution, the output image is generated by taking a dot product between an Input image and a Kernel matrix. This is then shifted along the image and after each shift, corresponding values of the output are generated using a dot product:

As we saw in the previous chapter, we can perform a convolution operation using OpenCV as follows:

kernel = np.ones((5,5),np.float32)/25
dst = cv2.filter2D(gray,-1...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete