Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Healthcare Analytics Made Simple
  • Toc
  • feedback
Healthcare Analytics Made Simple

Healthcare Analytics Made Simple

By : Kumar, Khader
4.4 (8)
close
Healthcare Analytics Made Simple

Healthcare Analytics Made Simple

4.4 (8)
By: Kumar, Khader

Overview of this book

In recent years, machine learning technologies and analytics have been widely utilized across the healthcare sector. Healthcare Analytics Made Simple bridges the gap between practising doctors and data scientists. It equips the data scientists’ work with healthcare data and allows them to gain better insight from this data in order to improve healthcare outcomes. This book is a complete overview of machine learning for healthcare analytics, briefly describing the current healthcare landscape, machine learning algorithms, and Python and SQL programming languages. The step-by-step instructions teach you how to obtain real healthcare data and perform descriptive, predictive, and prescriptive analytics using popular Python packages such as pandas and scikit-learn. The latest research results in disease detection and healthcare image analysis are reviewed. By the end of this book, you will understand how to use Python for healthcare data analysis, how to import, collect, clean, and refine data from electronic health record (EHR) surveys, and how to make predictive models with this data through real-world algorithms and code examples.
Table of Contents (11 chapters)
close

Comparing hospitals

In the previous example, we analyzed the performance of dialysis centers using Python. Dialysis centers are just one small part of the healthcare provider pool – a pool which also includes hospitals, outpatient offices, nursing homes, inpatient rehabilitation facilities, and hospice providers, for example. As you were downloading the dialysis facility comparison data from https://data.medicare.gov, you might have noticed the presence of performance data for these other facilities. We are going to now examine the data for a more complex facility type: the inpatient hospital. The Hospital Compare dataset includes data for three of the eight CMS value-based programs. It is a large dataset, and we are going to demonstrate some advanced Python and pandas features using this data.

...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete