Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python Deep Learning
  • Toc
  • feedback
Python Deep Learning

Python Deep Learning

By : Zocca, Spacagna, Daniel Slater, Roelants
4.1 (10)
close
Python Deep Learning

Python Deep Learning

4.1 (10)
By: Zocca, Spacagna, Daniel Slater, Roelants

Overview of this book

With an increasing interest in AI around the world, deep learning has attracted a great deal of public attention. Every day, deep learning algorithms are used broadly across different industries. The book will give you all the practical information available on the subject, including the best practices, using real-world use cases. You will learn to recognize and extract information to increase predictive accuracy and optimize results. Starting with a quick recap of important machine learning concepts, the book will delve straight into deep learning principles using Sci-kit learn. Moving ahead, you will learn to use the latest open source libraries such as Theano, Keras, Google's TensorFlow, and H20. Use this guide to uncover the difficulties of pattern recognition, scaling data with greater accuracy and discussing deep learning algorithms and techniques. Whether you want to dive deeper into Deep Learning, or want to investigate how to get more out of this powerful technology, you’ll find everything inside.
Table of Contents (12 chapters)
close
11
Index

A convolutional layer example with Keras to recognize digits


In the third chapter, we introduced a simple neural network to classify digits using Keras and we got 94%. In this chapter, we will work to improve that value above 99% using convolutional networks. Actual values may vary slightly due to variability in initialization.

First of all, we can start by improving the neural network we had defined by using 400 hidden neurons and run it for 30 epochs; that should get us already up to around 96.5% accuracy:

    hidden_neurons = 400
    epochs = 30

Next we could try scaling the input. Images are comprised of pixels, and each pixel has an integer value between 0 and 255. We could make that value a float and scale it between 0 and 1 by adding these four lines of code right after we define our input:

X_train = X_train.astype('float32')     
X_test = X_test.astype('float32')     
X_train /= 255     
X_test /= 255

If we run our network now, we get a poorer accuracy, just above 92%, but we need not...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete