Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Pandas Cookbook
  • Table Of Contents Toc
  • Feedback & Rating feedback
Pandas Cookbook

Pandas Cookbook

By : Theodore Petrou
4.3 (32)
close
close
Pandas Cookbook

Pandas Cookbook

4.3 (32)
By: Theodore Petrou

Overview of this book

This book will provide you with unique, idiomatic, and fun recipes for both fundamental and advanced data manipulation tasks with pandas 0.20. Some recipes focus on achieving a deeper understanding of basic principles, or comparing and contrasting two similar operations. Other recipes will dive deep into a particular dataset, uncovering new and unexpected insights along the way. The pandas library is massive, and it's common for frequent users to be unaware of many of its more impressive features. The official pandas documentation, while thorough, does not contain many useful examples of how to piece together multiple commands like one would do during an actual analysis. This book guides you, as if you were looking over the shoulder of an expert, through practical situations that you are highly likely to encounter. Many advanced recipes combine several different features across the pandas 0.20 library to generate results.
Table of Contents (12 chapters)
close
close

Introduction

The goal of this chapter is to introduce a foundation of pandas by thoroughly inspecting the Series and DataFrame data structures. It is vital for pandas users to know each component of the Series and the DataFrame, and to understand that each column of data in pandas holds precisely one data type.

In this chapter, you will learn how to select a single column of data from a DataFrame, which is returned as a Series. Working with this one-dimensional object makes it easy to show how different methods and operators work. Many Series methods return another Series as output. This leads to the possibility of calling further methods in succession, which is known as method chaining.

The Index component of the Series and DataFrame is what separates pandas from most other data analysis libraries and is the key to understanding how many operations work. We will get a glimpse of this powerful object when we use it as a meaningful label for Series values. The final two recipes contain simple tasks that frequently occur during a data analysis.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY