Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Practical Data Analysis
  • Table Of Contents Toc
  • Feedback & Rating feedback
Practical Data Analysis

Practical Data Analysis

By : Hector Cuesta
3.6 (7)
close
close
Practical Data Analysis

Practical Data Analysis

3.6 (7)
By: Hector Cuesta

Overview of this book

Plenty of small businesses face big amounts of data but lack the internal skills to support quantitative analysis. Understanding how to harness the power of data analysis using the latest open source technology can lead them to providing better customer service, the visualization of customer needs, or even the ability to obtain fresh insights about the performance of previous products. Practical Data Analysis is a book ideal for home and small business users who want to slice and dice the data they have on hand with minimum hassle.Practical Data Analysis is a hands-on guide to understanding the nature of your data and turn it into insight. It will introduce you to the use of machine learning techniques, social networks analytics, and econometrics to help your clients get insights about the pool of data they have at hand. Performing data preparation and processing over several kinds of data such as text, images, graphs, documents, and time series will also be covered.Practical Data Analysis presents a detailed exploration of the current work in data analysis through self-contained projects. First you will explore the basics of data preparation and transformation through OpenRefine. Then you will get started with exploratory data analysis using the D3js visualization framework. You will also be introduced to some of the machine learning techniques such as, classification, regression, and clusterization through practical projects such as spam classification, predicting gold prices, and finding clusters in your Facebook friends' network. You will learn how to solve problems in text classification, simulation, time series forecast, social media, and MapReduce through detailed projects. Finally you will work with large amounts of Twitter data using MapReduce to perform a sentiment analysis implemented in Python and MongoDB. Practical Data Analysis contains a combination of carefully selected algorithms and data scrubbing that enables you to turn your data into insight.
Table of Contents (24 chapters)
close
close
Practical Data Analysis
Credits
Foreword
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Preface
Index

Bayesian classification


Probabilistic classification is a practical way to draw inferences based on data, using statistical inference to find the best class for a given value. Given the probability distribution, we can select the best option with the highest probability. The Bayes theorem is the basic rule to draw inferences. The Bayes theorem allows us to update the likelihood of an event, given the new data or observations. In other words, it allows us to update the prior probability P (A) to the posterior probability P (A|B). The prior probability is given by the likelihood before the data is evaluated and the posterior probability is assigned after the data is taken into account. The following expression represents the Bayes theorem:

Naïve Bayes algorithm

Naïve Bayes is the simplest classification algorithm among Bayesian classification methods. In this algorithm, we simply need to learn the probabilities by making the assumption that the attributes A and B are independent, that's why...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY