Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning with R
  • Toc
  • feedback
Machine Learning with R

Machine Learning with R

By : Brett Lantz
4.4 (73)
close
Machine Learning with R

Machine Learning with R

4.4 (73)
By: Brett Lantz

Overview of this book

Machine learning, at its core, is concerned with transforming data into actionable knowledge. This fact makes machine learning well-suited to the present-day era of "big data" and "data science". Given the growing prominence of R—a cross-platform, zero-cost statistical programming environment—there has never been a better time to start applying machine learning. Whether you are new to data science or a veteran, machine learning with R offers a powerful set of methods for quickly and easily gaining insight from your data. "Machine Learning with R" is a practical tutorial that uses hands-on examples to step through real-world application of machine learning. Without shying away from the technical details, we will explore Machine Learning with R using clear and practical examples. Well-suited to machine learning beginners or those with experience. Explore R to find the answer to all of your questions. How can we use machine learning to transform data into action? Using practical examples, we will explore how to prepare data for analysis, choose a machine learning method, and measure the success of the process. We will learn how to apply machine learning methods to a variety of common tasks including classification, prediction, forecasting, market basket analysis, and clustering. By applying the most effective machine learning methods to real-world problems, you will gain hands-on experience that will transform the way you think about data. "Machine Learning with R" will provide you with the analytical tools you need to quickly gain insight from complex data.
Table of Contents (19 chapters)
close
Machine Learning with R
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
9
Finding Groups of Data – Clustering with k-means
Index

Chapter 4. Probabilistic Learning – Classification Using Naive Bayes

When a meteorologist provides a weather forecast, precipitation is typically predicted using terms such as "70 percent chance of rain." These forecasts are known as probability of precipitation reports. Have you ever considered how they are calculated? It is a puzzling question, because in reality, it will either rain or it will not.

These estimates are based on probabilistic methods, or methods concerned with describing uncertainty. They use data on past events to extrapolate future events. In the case of weather, the chance of rain describes the proportion of prior days with similar measurable atmospheric conditions in which precipitation occurred. A 70 percent chance of rain therefore implies that in 7 out of 10 past cases with similar weather patterns, precipitation occurred somewhere in the area.

This chapter covers a machine learning algorithm called naive Bayes, which also uses principles of probability for classification...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete