Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Geospatial Data Science Quick Start Guide
  • Toc
  • feedback
Geospatial Data Science Quick Start Guide

Geospatial Data Science Quick Start Guide

By : Abdishakur Hassan, Jayakrishnan Vijayaraghavan
4 (6)
close
Geospatial Data Science Quick Start Guide

Geospatial Data Science Quick Start Guide

4 (6)
By: Abdishakur Hassan, Jayakrishnan Vijayaraghavan

Overview of this book

Data scientists, who have access to vast data streams, are a bit myopic when it comes to intrinsic and extrinsic location-based data and are missing out on the intelligence it can provide to their models. This book demonstrates effective techniques for using the power of data science and geospatial intelligence to build effective, intelligent data models that make use of location-based data to give useful predictions and analyses. This book begins with a quick overview of the fundamentals of location-based data and how techniques such as Exploratory Data Analysis can be applied to it. We then delve into spatial operations such as computing distances, areas, extents, centroids, buffer polygons, intersecting geometries, geocoding, and more, which adds additional context to location data. Moving ahead, you will learn how to quickly build and deploy a geo-fencing system using Python. Lastly, you will learn how to leverage geospatial analysis techniques in popular recommendation systems such as collaborative filtering and location-based recommendations, and more. By the end of the book, you will be a rockstar when it comes to performing geospatial analysis with ease.
Table of Contents (9 chapters)
close

A primer on Google Colaboratory and Jupyter Notebooks

Jupyter Notebooks have become the favorite tool for data scientists, as they are flexible and combine code, computational output/multimedia, as well as comments. It is free, open source, and provides computational capabilities and interactive web-based notebooks. Anaconda distributions make the installation process easy if you want to install Jupyter Notebook on your local machine. The official Anaconda documents to install Jupyter Notebooks and Python is easy to follow and intuitive, so feel free to follow the instructions if you would like to work on your local machine.

However, we will use Google Colab, which is a free Jupyter Notebook environment that requires no installation or setup and runs entirely in the cloud, just like using Google Docs or Google Sheets. Google Colab enables you to write code, run the code, and share it. You just need to have a working Gmail to save and access Google Colab Jupyter Notebooks. In heavy computational tasks, such as machine learning or deep learning with big data, Google Colab allows you to use its Graphics Processing Unit (GPU) or Tensor Processing Unit (TPU) for free.

Google Colab interface is shown as follows. In the upper part, you have the main menu. The right part is where we can write our code and comments:

Google Colab

You can open Google Colab from this URL: https://colab.research.google.com. There are two main types of cells: code and text. With a code cell, you can write your code and execute it, while a text cell allows you to write down your text with a markdown. Here, you can have different text types, including several heading levels as well as a bulleted and a numbered list. To execute a cell, you can either use a Ctrl + Enter shortcut or press the Run button (small triangle) next to the cell.

We will learn Google by using it as our coding platform for this book. If you are new to Jupyter Notebooks or Google Colab, here is a useful guide to get started: https://colab.research.google.com/notebooks/welcome.ipynb#scrollTo=GJBs_flRovLc.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete