Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python High Performance, Second Edition
  • Table Of Contents Toc
  • Feedback & Rating feedback
Python High Performance, Second Edition

Python High Performance, Second Edition

By : Dr. Gabriele Lanaro
4 (2)
close
close
Python High Performance, Second Edition

Python High Performance, Second Edition

4 (2)
By: Dr. Gabriele Lanaro

Overview of this book

Python is a versatile language that has found applications in many industries. The clean syntax, rich standard library, and vast selection of third-party libraries make Python a wildly popular language. Python High Performance is a practical guide that shows how to leverage the power of both native and third-party Python libraries to build robust applications. The book explains how to use various profilers to find performance bottlenecks and apply the correct algorithm to fix them. The reader will learn how to effectively use NumPy and Cython to speed up numerical code. The book explains concepts of concurrent programming and how to implement robust and responsive applications using Reactive programming. Readers will learn how to write code for parallel architectures using Tensorflow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. By the end of the book, readers will have learned to achieve performance and scale from their Python applications.
Table of Contents (10 chapters)
close
close

Exploring Compilers

Python is a mature and widely used language and there is a large interest in improving its performance by compiling functions and methods directly to machine code rather than executing instructions in the interpreter. We have already seen a compiler example in Chapter 4, C Performance with Cython, where Python code is enhanced with types, compiled to efficient C code, and the interpreter calls are side-stepped.

In this chapter, we will explore two projects--Numba and PyPy--that approach compilation in a slightly different way. Numba is a library designed to compile small functions on the fly. Instead of transforming Python code to C, Numba analyzes and compiles Python functions directly to machine code. PyPy is a replacement interpreter that works by analyzing the code at runtime and optimizing the slow loops automatically.

These tools are called Just-In-Time (JIT) compilers because the compilation...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY