Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Mastering the C++17 STL
  • Toc
  • feedback
Mastering the C++17 STL

Mastering the C++17 STL

By : Arthur O'Dwyer
4.5 (11)
close
Mastering the C++17 STL

Mastering the C++17 STL

4.5 (11)
By: Arthur O'Dwyer

Overview of this book

Modern C++ has come a long way since 2011. The latest update, C++17, has just been ratified and several implementations are on the way. This book is your guide to the C++ standard library, including the very latest C++17 features. The book starts by exploring the C++ Standard Template Library in depth. You will learn the key differences between classical polymorphism and generic programming, the foundation of the STL. You will also learn how to use the various algorithms and containers in the STL to suit your programming needs. The next module delves into the tools of modern C++. Here you will learn about algebraic types such as std::optional, vocabulary types such as std::function, smart pointers, and synchronization primitives such as std::atomic and std::mutex. In the final module, you will learn about C++'s support for regular expressions and file I/O. By the end of the book you will be proficient in using the C++17 standard library to implement real programs, and you'll have gained a solid understanding of the library's own internals.
Table of Contents (13 chapters)
close

Our first permutative algorithm: std::sort

So far all the algorithms we've covered simply walk through their given ranges in order, linearly, from one element to the next. Our next family of algorithms doesn't behave that way. Instead, it takes the values of the elements in the given range and shuffles them around so that the same values still appear, but in a different order. The mathematical name for this operation is a permutation.

The simplest permutative algorithm to describe is std::sort(a,b). It does what the name implies: sort the given range so that the smallest elements appear at the front and the biggest elements at the back. To figure out which elements are "smallest," std::sort(a,b) uses operator<.

If you want a different order, you could try to overload operator< to return true under different conditions--but probably what you should do...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete