Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • LLM Engineer's Handbook
  • Toc
  • feedback
LLM Engineer's Handbook

LLM Engineer's Handbook

By : Paul Iusztin, Maxime Labonne
4.8 (25)
close
LLM Engineer's Handbook

LLM Engineer's Handbook

4.8 (25)
By: Paul Iusztin, Maxime Labonne

Overview of this book

Artificial intelligence has undergone rapid advancements, and Large Language Models (LLMs) are at the forefront of this revolution. This LLM book offers insights into designing, training, and deploying LLMs in real-world scenarios by leveraging MLOps best practices. The guide walks you through building an LLM-powered twin that’s cost-effective, scalable, and modular. It moves beyond isolated Jupyter notebooks, focusing on how to build production-grade end-to-end LLM systems. Throughout this book, you will learn data engineering, supervised fine-tuning, and deployment. The hands-on approach to building the LLM Twin use case will help you implement MLOps components in your own projects. You will also explore cutting-edge advancements in the field, including inference optimization, preference alignment, and real-time data processing, making this a vital resource for those looking to apply LLMs in their projects. By the end of this book, you will be proficient in deploying LLMs that solve practical problems while maintaining low-latency and high-availability inference capabilities. Whether you are new to artificial intelligence or an experienced practitioner, this book delivers guidance and practical techniques that will deepen your understanding of LLMs and sharpen your ability to implement them effectively.
Table of Contents (15 chapters)
close
12
Other Books You May Enjoy
13
Index

Planning the MVP of the LLM Twin product

Now that we understand what an LLM Twin is and why we want to build it, we must clearly define the product’s features. In this book, we will focus on the first iteration, often labeled the minimum viable product (MVP), to follow the natural cycle of most products. Here, the main objective is to align our ideas with realistic and doable business objectives using the available resources to produce the product. Even as an engineer, as you grow up in responsibilities, you must go through these steps to bridge the gap between the business needs and what can be implemented.

What is an MVP?

An MVP is a version of a product that includes just enough features to draw in early users and test the viability of the product concept in the initial stages of development. Usually, the purpose of the MVP is to gather insights from the market with minimal effort.

An MVP is a powerful strategy because of the following reasons:

  • Accelerated time-to-market: Launch a product quickly to gain early traction
  • Idea validation: Test it with real users before investing in the full development of the product
  • Market research: Gain insights into what resonates with the target audience
  • Risk minimization: Reduces the time and resources needed for a product that might not achieve market success

Sticking to the V in MVP is essential, meaning the product must be viable. The product must provide an end-to-end user journey without half-implemented features, even if the product is minimal. It must be a working product with a good user experience that people will love and want to keep using to see how it evolves to its full potential.

Defining the LLM Twin MVP

As a thought experiment, let’s assume that instead of building this project for this book, we want to make a real product. In that case, what are our resources? Well, unfortunately, not many:

  • We are a team of three people with two ML engineers and one ML researcher
  • Our laptops
  • Personal funding for computing, such as training LLMs
  • Our enthusiasm

As you can see, we don’t have many resources. Even if this is just a thought experiment, it reflects the reality for most start-ups at the beginning of their journey. Thus, we must be very strategic in defining our LLM Twin MVP and what features we want to pick. Our goal is simple: we want to maximize the product’s value relative to the effort and resources poured into it.

To keep it simple, we will build the features that can do the following for the LLM Twin:

  • Collect data from your LinkedIn, Medium, Substack, and GitHub profiles
  • Fine-tune an open-source LLM using the collected data
  • Populate a vector database (DB) using our digital data for RAG
  • Create LinkedIn posts leveraging the following:
    • User prompts
    • RAG to reuse and reference old content
    • New posts, articles, or papers as additional knowledge to the LLM
  • Have a simple web interface to interact with the LLM Twin and be able to do the following:
    • Configure your social media links and trigger the collection step
    • Send prompts or links to external resources

That will be the LLM Twin MVP. Even if it doesn’t sound like much, remember that we must make this system cost effective, scalable, and modular.

Even if we focus only on the core features of the LLM Twin defined in this section, we will build the product with the latest LLM research and best software engineering and MLOps practices in mind. We aim to show you how to engineer a cost-effective and scalable LLM application.

Until now, we have examined the LLM Twin from the users’ and businesses’ perspectives. The last step is to examine it from an engineering perspective and define a development plan to understand how to solve it technically. From now on, the book’s focus will be on the implementation of the LLM Twin.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete