Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python Machine Learning By Example
  • Toc
  • feedback
Python Machine Learning By Example

Python Machine Learning By Example

By : Yuxi (Hayden) Liu
4.9 (9)
close
Python Machine Learning By Example

Python Machine Learning By Example

4.9 (9)
By: Yuxi (Hayden) Liu

Overview of this book

The fourth edition of Python Machine Learning By Example is a comprehensive guide for beginners and experienced machine learning practitioners who want to learn more advanced techniques, such as multimodal modeling. Written by experienced machine learning author and ex-Google machine learning engineer Yuxi (Hayden) Liu, this edition emphasizes best practices, providing invaluable insights for machine learning engineers, data scientists, and analysts. Explore advanced techniques, including two new chapters on natural language processing transformers with BERT and GPT, and multimodal computer vision models with PyTorch and Hugging Face. You’ll learn key modeling techniques using practical examples, such as predicting stock prices and creating an image search engine. This hands-on machine learning book navigates through complex challenges, bridging the gap between theoretical understanding and practical application. Elevate your machine learning and deep learning expertise, tackle intricate problems, and unlock the potential of advanced techniques in machine learning with this authoritative guide.
Table of Contents (18 chapters)
close
16
Other Books You May Enjoy
17
Index

Preventing overfitting in neural networks

A neural network is powerful as it can derive hierarchical features from data with the right architecture (the right number of hidden layers and hidden nodes). It offers a great deal of flexibility and can fit a complex dataset. However, this advantage will become a weakness if the network is not given enough control over the learning process. Specifically, it may lead to overfitting if a network is only good at fitting to the training set but is not able to generalize to unseen data. Hence, preventing overfitting is essential to the success of a neural network model.

There are mainly three ways to impose restrictions on our neural networks: L1/L2 regularization, dropout, and early stopping. We practiced the first method in Chapter 4, Predicting Online Ad Click-Through with Logistic Regression, and will discuss the other two in this section.

Dropout

Dropout means ignoring a certain set of hidden nodes during the learning phase...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete