Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python Machine Learning By Example
  • Toc
  • feedback
Python Machine Learning By Example

Python Machine Learning By Example

By : Yuxi (Hayden) Liu
4.9 (9)
close
Python Machine Learning By Example

Python Machine Learning By Example

4.9 (9)
By: Yuxi (Hayden) Liu

Overview of this book

The fourth edition of Python Machine Learning By Example is a comprehensive guide for beginners and experienced machine learning practitioners who want to learn more advanced techniques, such as multimodal modeling. Written by experienced machine learning author and ex-Google machine learning engineer Yuxi (Hayden) Liu, this edition emphasizes best practices, providing invaluable insights for machine learning engineers, data scientists, and analysts. Explore advanced techniques, including two new chapters on natural language processing transformers with BERT and GPT, and multimodal computer vision models with PyTorch and Hugging Face. You’ll learn key modeling techniques using practical examples, such as predicting stock prices and creating an image search engine. This hands-on machine learning book navigates through complex challenges, bridging the gap between theoretical understanding and practical application. Elevate your machine learning and deep learning expertise, tackle intricate problems, and unlock the potential of advanced techniques in machine learning with this authoritative guide.
Table of Contents (18 chapters)
close
16
Other Books You May Enjoy
17
Index

Evaluating regression performance

So far, we’ve covered three popular regression algorithms in depth and implemented them from scratch by using several prominent libraries. Instead of judging how well a model works on testing sets by printing out the prediction, we need to evaluate its performance with the following metrics, which give us better insights:

  • The MSE, as I mentioned, measures the squared loss corresponding to the expected value. Sometimes, the square root is taken on top of the MSE in order to convert the value back into the original scale of the target variable being estimated. This yields the Root Mean Squared Error (RMSE). Also, the RMSE has the benefit of penalizing large errors more, since we first calculate the square of an error.
  • Conversely, the Mean Absolute Error (MAE) measures the absolute loss. It uses the same scale as the target variable and gives us an idea of how close the predictions are to the actual values.

For both the...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete