Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python Machine Learning By Example
  • Toc
  • feedback
Python Machine Learning By Example

Python Machine Learning By Example

By : Yuxi (Hayden) Liu
4.9 (9)
close
Python Machine Learning By Example

Python Machine Learning By Example

4.9 (9)
By: Yuxi (Hayden) Liu

Overview of this book

The fourth edition of Python Machine Learning By Example is a comprehensive guide for beginners and experienced machine learning practitioners who want to learn more advanced techniques, such as multimodal modeling. Written by experienced machine learning author and ex-Google machine learning engineer Yuxi (Hayden) Liu, this edition emphasizes best practices, providing invaluable insights for machine learning engineers, data scientists, and analysts. Explore advanced techniques, including two new chapters on natural language processing transformers with BERT and GPT, and multimodal computer vision models with PyTorch and Hugging Face. You’ll learn key modeling techniques using practical examples, such as predicting stock prices and creating an image search engine. This hands-on machine learning book navigates through complex challenges, bridging the gap between theoretical understanding and practical application. Elevate your machine learning and deep learning expertise, tackle intricate problems, and unlock the potential of advanced techniques in machine learning with this authoritative guide.
Table of Contents (18 chapters)
close
16
Other Books You May Enjoy
17
Index

Summary

In this chapter, we continued working on the online advertising click-through prediction project. This time, we overcame the categorical feature challenge by means of the one-hot encoding technique. We then resorted to a new classification algorithm, logistic regression, for its high scalability to large datasets. The in-depth discussion of the logistic regression algorithm started with the introduction of the logistic function, which led to the mechanics of the algorithm itself. This was followed by how to train a logistic regression model using gradient descent.

After implementing a logistic regression classifier by hand and testing it on our click-through dataset, you learned how to train the logistic regression model in a more advanced manner, using SGD, and we adjusted our algorithm accordingly. We also practiced how to use the SGD-based logistic regression classifier from scikit-learn and applied it to our project.

We then continued to tackle the problems we...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete