Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python Machine Learning By Example
  • Toc
  • feedback
Python Machine Learning By Example

Python Machine Learning By Example

By : Yuxi (Hayden) Liu
4.9 (9)
close
Python Machine Learning By Example

Python Machine Learning By Example

4.9 (9)
By: Yuxi (Hayden) Liu

Overview of this book

The fourth edition of Python Machine Learning By Example is a comprehensive guide for beginners and experienced machine learning practitioners who want to learn more advanced techniques, such as multimodal modeling. Written by experienced machine learning author and ex-Google machine learning engineer Yuxi (Hayden) Liu, this edition emphasizes best practices, providing invaluable insights for machine learning engineers, data scientists, and analysts. Explore advanced techniques, including two new chapters on natural language processing transformers with BERT and GPT, and multimodal computer vision models with PyTorch and Hugging Face. You’ll learn key modeling techniques using practical examples, such as predicting stock prices and creating an image search engine. This hands-on machine learning book navigates through complex challenges, bridging the gap between theoretical understanding and practical application. Elevate your machine learning and deep learning expertise, tackle intricate problems, and unlock the potential of advanced techniques in machine learning with this authoritative guide.
Table of Contents (18 chapters)
close
16
Other Books You May Enjoy
17
Index

Making Predictions with Sequences Using Recurrent Neural Networks

In the previous chapter, we focused on Convolutional Neural Networks (CNNs) and used them to deal with image-related tasks. In this chapter, we will explore Recurrent Neural Networks (RNNs), which are suitable for sequential data and time-dependent data, such as daily temperature, DNA sequences, and customers’ shopping transactions over time. You will learn how the recurrent architecture works and see variants of the model. We will then work on their applications, including sentiment analysis, time series prediction, and text generation.

We will cover the following topics in this chapter:

  • Tracking sequential learning
  • Learning the RNN architecture by example
  • Training an RNN model
  • Overcoming long-term dependencies with Long Short-Term Memory (LSTM)
  • Analyzing movie review sentiment with RNNs
  • Revisiting stock price forecasting with LSTM
  • Writing your own War and Peace...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete